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A.24 Counterfactuals: Welfare (Ŵ , Varying Parameters) . . . . . . . . . . . . . . . . . . . . . . 35

C.1 Residence and Workplace Distance to BRT Stations (2002) . . . . . . . . . . . . . . . . . . 45

C.2 Summary Statistics on Well-Defined Trips . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C.3 Log Travel Time Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

D.1 ATT Estimates of BRT Proximity: Demographic, Employment, and Housing . . . . . . . 52

List of Figures
A.1 Histograms of Changes in Number of Road Lanes, by BRT Standard (2003-2010) . . . . . 7

(a) Silver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

(b) Bronze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

(c) Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A.2 Example of Changes in Number of Road Lanes: Harmoni Sentral Station . . . . . . . . . . 8

(a) 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2



(b) 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A.3 Distribution of Neighborhood Propensity Scores . . . . . . . . . . . . . . . . . . . . . . . . 10

(a) Treated vs. Non-Treated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

(b) Treated vs. Placebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

A.4 Pre-Trends: Average Nighttime Light Intensity . . . . . . . . . . . . . . . . . . . . . . . . . 11

(a) Unweighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

(b) Weighted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A.5 Linear Gravity Regression: Residual-on-Residual Plot . . . . . . . . . . . . . . . . . . . . . 20

A.6 Corridor 1: Original HOV vs. Expanded HOV . . . . . . . . . . . . . . . . . . . . . . . . . 27

A.7 Negative Spillovers: Impact of BRT on Travel Times by Distance . . . . . . . . . . . . . . . 30

A.8 Baseline Model: Actual vs. Predicted Population . . . . . . . . . . . . . . . . . . . . . . . . 35

(a) Residential Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

(b) Workplace Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.9 Baseline vs. Removing the BRT: Actual vs. Predicted Population . . . . . . . . . . . . . . . 36

(a) Residential Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

(b) Workplace Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.10 Counterfactual ∆ Residential and Workplace Population Shares: Removing the BRT . . . 36

(a) ∆ Residential Population Shares (l̂R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

(b) ∆ Workplace Population Shares (l̂F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.11 Counterfactual ∆ Residential and Workplace Population Shares: Keeping the BRT but
Removing Spillovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

(a) ∆ Residential Population Shares (l̂R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

(b) ∆ Workplace Population Shares (l̂F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.12 Counterfactual ∆ Residential and Workplace Population Shares: Corridor 1 Standards . . 37

(a) ∆ Residential Population Shares (l̂R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

(b) ∆ Workplace Population Shares (l̂F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.13 Counterfactual ∆ Residential and Workplace Population Shares: TransMilenio Standards 38

(a) ∆ Residential Population Shares (l̂R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

(b) ∆ Workplace Population Shares (l̂F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.14 Counterfactual ∆ Residential and Workplace Population Shares: Building Planned Lines,
Low Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

(a) ∆ Residential Population Shares (l̂R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

(b) ∆ Workplace Population Shares (l̂F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.15 Counterfactual ∆ Residential and Workplace Population Shares: Building Planned Lines,
High Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

(a) ∆ Residential Population Shares (l̂R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

(b) ∆ Workplace Population Shares (l̂F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

C.1 Employment Shares and Population Growth by Community . . . . . . . . . . . . . . . . . 47

(a) Employment Share (2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

(b) Population Growth (2000-2010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3



C.2 Changes in Vehicle Ownership and Mode Choice . . . . . . . . . . . . . . . . . . . . . . . . 48

(a) Panel A: Vehicle Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

(b) Panel B: Mode Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

C.3 Vehicle Ownership by Income, 2002-2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

(a) Motorcycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

(b) Cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

C.4 Mode Choice in 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4



A Additional Tables and Figures

A.1 Summary Statistics

Table A.1: Summary Statistics on Trip Data for BRT Routes: Pre-BRT (2002)

CORRIDOR 1 TRIPS OTHER CORRIDOR TRIPS

MEAN (SD) N ∆ MEAN N
(1) (2) (3) (4)

LOG NUMBER OF COMMUTERS (2002) 7.35 (2.88) 237 1.24*** 4514
DISTANCE (KM) 2.46 (2.27) 237 -2.94*** 4514
DELAY (MIN/KM) 13.99 (6.32) 235 3.70*** 4501
DELAY (MIN/KM, RESIDUALS) 3.56 (6.16) 235 3.61*** 4501
TRAVEL TIME (MIN) 28.23 (15.67) 237 -16.74*** 4514
TRAVEL TIME (MIN, RESIDUALS) -5.13 (15.21) 237 -15.35*** 4514

Notes: Authors’ calculations. Each observation is an origin-destination pair (at the kelurahan level). Column 1 and 2 report the
mean, standard deviation (in parentheses), and number of observations of the variable on the left-hand side for routes that
originate and terminate within 1 km of a Corridor 1 station in 2010. Columns 3 (4) report the difference in means (number of
observations) between routes that originate and terminate within 1 km of another BRT station in 2010. The “residual” variables
were constructed after partialling out separate indicators for mode choice, trip purpose, and departure hours. The significance
stars in this table are computed by regressing the outcome variable on a treatment indicator. In these regressions, we cluster
standard errors at the sub-district (kecamatan) level, and significance levels are from the p-values of these treatment indicators.
*/**/*** denotes significance at the 10% / 5% / 1% levels.
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Table A.2: Summary Statistics on BRT Communities: Pre-Treatment Characteristics

d (CORRIDOR 1) ≤ 1 d (OTHER LINE) ≤ 1

MEAN (SD) N ∆ MEAN N
PANEL A: CENSUS 2000 (1) (2) (3) (4)

LOG POPULATION DENSITY 9.75 (0.92) 29 -0.48* 111
AVERAGE YEARS OF SCHOOLING 8.38 (0.78) 29 0.28 111
% OF RECENT MIGRANTS FROM A DIFF. DISTRICT 12.99 (6.28) 29 3.54 111
% OF RECENT MIGRANTS FROM A DIFF. PROVINCE 11.11 (5.56) 29 3.38* 111

PANEL B: JICA 2002
MONTHLY INCOME < RP 1 MIL 0.44 (0.19) 26 0.05 106
MONTHLY INCOME RP. 1-5 MIL 0.50 (0.14) 26 -0.05 106
MONTHLY INCOME > RP 5 MIL 0.05 (0.09) 26 0.00 106
OWN A CAR (0 1)? 0.25 (0.21) 26 0.00 106
OWN A MOTORCYCLE? (0 1) 0.36 (0.15) 26 -0.02 106
MAIN MODE: TRAIN 0.03 (0.04) 26 0.00 106
MAIN MODE: OTHER PUBLIC TRANSPORT 0.48 (0.16) 26 -0.04 106
MAIN MODE: TAXI / OJEK / BAJAJ 0.07 (0.07) 26 0.01 106
MAIN MODE: CAR 0.21 (0.22) 26 0.03 106
MAIN MODE: MOTORCYCLE 0.22 (0.13) 26 -0.00 106
MAIN MODE: NON-MOTORIZED TRANSIT 0.00 (0.00) 26 -0.00** 106

PANEL C: GIS VARIABLES
AREA -0.51 (0.63) 29 -0.38** 111
LOG DIST. TO CITY CENTER 8.17 (1.09) 29 -0.82* 111
ELEVATION 10.05 (7.03) 29 -3.73 111
RUGGEDNESS 0.17 (0.13) 29 0.02 111

PANEL D: PRE-TRENDS (PODES, NIGHT LIGHTS)
∆ % OF HH W/ A CAR (1996-2000) -0.15 (0.17) 28 -0.12*** 106
∆ % OF HH W/ A MOTORCYLE (1996-2000) -0.16 (0.26) 28 -0.15* 107
∆ NIGHT LIGHT INTENSITY (1998-2003) 0.00 (0.00) 29 0.31*** 111

Notes: Authors’ calculations. Each observation is a community (kelurahan). Column 1 and 2 report the mean, standard deviation
(in parentheses), and number of observations of the variable on the left-hand side for communities that are within 1 km of a
Corridor 1 station in 2010. Columns 3 (4) report the difference in means (number of observations) between the communities
within 1 km of a Corridor 1 station and communities within 1 km of another BRT station in 2010. The significance stars in
this table are computed by regressing the outcome variable on a treatment indicator. In these regressions, we cluster standard
errors at the sub-district (kecamatan) level, and significance levels are from the p-values of these treatment indicators. */**/***
denotes significance at the 10% / 5% / 1% levels.
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Figure A.1: Histograms of Changes in Number of Road Lanes, by BRT Standard (2003-2010)

(A) SILVER

(B) BRONZE

(C) BASIC

Notes: This figure provides histograms of changes in the number of lanes of traffic on roads parallel to BRT corridors and
stations from 2003 to 2010. To construct this figure, we used Google Earth Pro’s satellite imagery, provided by Digital Globe,
to visually inspect images of BRT station locations in 2003 (before those stations were constructed) and in 2010 (after those
stations had become operational). For each image (see the example in Figure A.2), we counted the number of lanes of traffic in
both directions. We then plotted histograms of the change in the number of lanes across BRT corridors of different standards.
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Figure A.2: Example of Changes in Number of Road Lanes: Harmoni Sentral Station

(A) 2003 (B) 2010

Notes: This figure provides an example of changes in the number of road lanes from Google Earth Pro’s satellite imagery,
provided by Digital Globe. The two images depict the area around Harmoni Sentral Station (6.1656◦S, 106.8203◦E) in 2003 and
2010. Although the resolution of the 2003 image is somewhat coarser than the 2010 image, it shows that there were 10 lanes (5
in each direction) in 2003 and only 8 lanes (4 in each direction) in 2010. We sometimes used nearby imagery along the same
roads as the stations to calculate these changes.
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A.2 ATT Effects of Station Proximity: Vehicle Ownership and Mode Choice

Table A.3: Neighborhood Propensity Score

TREATED TREATED
VS. ALL VS. PLANNED

NON-TREATED + EVENTUAL

(1) (2)

POPULATION DENSITY (2000) -0.003 -0.043
(0.009) (0.034)

SHARE OF 5-YEAR DISTRICT MIGRANTS (2000) -0.004*** -0.015*
(0.001) (0.009)

MONTHLY INCOME < RP 1 MIL (%, 2002) 0.083 0.441*
(0.057) (0.252)

MONTHLY INCOME > RP 5 MIL (%, 2002) 0.041 0.443
(0.083) (0.468)

NO PRIMARY SCHOOL SHARE (2002) -0.007*** -0.011
(0.002) (0.014)

COLLEGE COMPLETION SHARE (2002) 0.001 0.006
(0.002) (0.010)

SHARE OF COMMUTING TRIPS TO/FROM DKI JAKARTA -0.036** -0.155*
(0.017) (0.089)

LOG DIST. TO CITY CENTER 0.105 1.137*
(0.120) (0.595)

LOG DIST. TO CITY CENTER (SQUARED) -0.007 -0.077**
(0.007) (0.038)

ELEVATION 0.001*** 0.011***
(0.000) (0.004)

NIGHT LIGHT INTENSITY (1992) 0.038*** 0.092
(0.009) (0.061)

∆ NIGHT LIGHT INTENSITY (1992-2002) 0.029*** 0.045
(0.009) (0.066)

RUGGEDNESS 0.021 0.302
(0.028) (0.202)

AREA -0.016* -0.035
(0.008) (0.044)

N 1487 241
PSEUDO R2 0.718 0.460
LOG LIKELIHOOD -125.8 -89.6
LR χ2 74.6 61.1

Notes: This table reports marginal effects of our estimated propensity score model. This propensity score is estimated with a logit regression,
where the dependent variable is an indicator for whether or not community c is within 1 km of the nearest BRT station, and the independent
variables are a vector of pre-treatment variables, xc. Column 1 includes results comparing treated communities to all non-treated communities,
while Column 2 restricts the comparison to only planned or eventually treated neighborhoods. Robust standard errors, clustered at the sub-
district (kecamatan) level, appear in parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.
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Figure A.3: Distribution of Neighborhood Propensity Scores
(A) TREATED VS. NON-TREATED

(B) TREATED VS. PLACEBO

Notes: This figure plots the distribution across communities of the estimated probabilities of being within 1 km of a BRT station,
based on the propensity score regressions reported in Appendix Table A.3. Panel A compares propensity scores for kelurahan
within 1 km of the closest BRT station to all other communities, while Panel B restricts the comparison to only the planned or
eventually treated communities.
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Figure A.4: Pre-Trends: Average Nighttime Light Intensity
(A) UNWEIGHTED

(B) WEIGHTED

Notes: This figure reports time-series graphs of average night-time lights intensity for communities that are within 1 km of a BRT
station in 2010 (“Treated”, in blue) and communities within 1 km of either a planned BRT line that has yet to be constructed
or a planned BRT station that was constructed after mid 2010 (“Planned + Eventually Treated”, in black). Panel A reports
unweighted averages, while Panel B uses weights generated by a first-step propensity score estimation.
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Continuous Treatment. Appendix Table A.4 reports results from linear regressions of changes in vehicle own-
ership and commuting modes on a continuous measure of distance to stations. Column 1 reports OLS estimates,
while in Columns 2-4, we use planned and eventual station distances as instrumental variables for actual station
distances. All regressions include the same set of pre-determined controls as in (1). These results largely support
our main findings that BRT-station proximity neither curbed vehicle ownership nor increased public transit use.

Table A.4: Effects of Continuous BRT Station Distance

OLS IV (2SLS)

(1) (2) (3) (4)

∆ SHARE OWNING CAR 0.000 -0.000 0.381 -0.000
(0.002) (0.002) (4.058) (0.002)

∆ SHARE OWNING MOTORCYCLE -0.003 -0.002 0.002 -0.002
(0.002) (0.002) (0.162) (0.002)

∆ MAIN MODE SHARE: BRT -0.001 -0.001 -0.012 -0.001
(0.001) (0.001) (0.130) (0.001)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT -0.001 -0.002 0.038 -0.002
(0.001) (0.002) (0.305) (0.002)

∆ MAIN MODE SHARE: CAR 0.002 0.002 0.031 0.002
(0.001)* (0.001)* (0.232) (0.001)**

∆ MAIN MODE SHARE: MOTORCYCLE -0.000 0.001 0.135 0.001
(0.003) (0.003) (1.125) (0.003)

∆ MAIN MODE SHARE: TRAIN -0.001 -0.001 0.094 -0.001
(0.001) (0.001) (0.739) (0.001)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT 0.001 0.002 -0.420 0.001
(0.002) (0.002) (3.249) (0.002)

∆ MAIN MODE SHARE: TAXI 0.001 -0.001 0.156 -0.001
(0.002) (0.002) (1.188) (0.002)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT -0.001 -0.001 0.016 -0.001
(0.001) (0.001) (0.135) (0.001)

N 696 696 696 696

CONTROLS X X X X
PLANNED IV . X . X
EVENTUAL IV . X X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on
a continuous measure of distance to the nearest BRT station. The regression includes all communities within 10 km of the
nearest BRT station. Column 1 reports OLS estimates, while in columns 2-4, we use planned and eventual distances to stations
as instrumental variables for actual distance to stations. All regressions also include the same set of pre-determined controls as
in (1). Robust standard errors, clustered at the sub-district level, are reported in parentheses. */**/*** denotes significance at
the 10% / 5% / 1% levels.
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Varying Treatment and Non-Treatment Definitions. The one-kilometer threshold we use to define a com-
munity’s treatment status is often used in empirical work and consistent with walking behavior of commuters
in Jakarta (see Footnote 18). Appendix Table A.5 shows that our mode-choice results are robust to alternative
distance thresholds used to define treatment status.

Table A.5: ATT Estimates on Vehicle Ownership and Mode Choice: Varying d

d = 0.5 d = 1 d = 1.5 d = 2 d = 2.5 d = 3

(1) (2) (3) (4) (5) (6)

∆ SHARE OWNING CAR 0.031 -0.035 -0.028 -0.025 -0.052 -0.126
(0.038) (0.063) (0.045) (0.046) (0.063) (0.095)

∆ SHARE OWNING MOTORCYCLE 0.066 0.010 -0.001 0.057 0.187 0.241
(0.045) (0.028) (0.039) (0.034)* (0.048)*** (0.065)***

∆ MAIN MODE SHARE: BRT 0.029 0.020 -0.017 -0.017 -0.026 -0.008
(0.037) (0.019) (0.025) (0.031) (0.037) (0.035)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.094 0.043 0.019 0.008 -0.082 0.028
(0.061) (0.025)* (0.029) (0.033) (0.049)* (0.052)

∆ MAIN MODE SHARE: CAR 0.081 -0.011 -0.014 -0.013 -0.128 -0.218
(0.046)* (0.027) (0.037) (0.035) (0.074)* (0.090)**

∆ MAIN MODE SHARE: MOTORCYCLE -0.028 0.027 0.035 0.060 0.093 0.084
(0.046) (0.030) (0.041) (0.060) (0.070) (0.080)

∆ MAIN MODE SHARE: TRAIN 0.010 0.004 -0.023 -0.008 0.011 0.057
(0.032) (0.018) (0.029) (0.021) (0.041) (0.049)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT -0.095 -0.041 0.026 -0.007 0.040 0.043
(0.038)** (0.029) (0.028) (0.030) (0.048) (0.066)

∆ MAIN MODE SHARE: TAXI 0.000 -0.003 -0.012 -0.022 -0.017 0.017
(0.013) (0.007) (0.008) (0.010)** (0.011) (0.023)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT 0.002 0.002 0.004 0.007 0.028 0.025
(0.007) (0.004) (0.007) (0.008) (0.011)** (0.020)

CONTROLS X X X X X X
OAXACA-BLINDER X X X X X X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the community is within d km of a BRT station, where d is listed in the column header, ranging
from d = 0.5 in column 1 to d = 3 in Column 6. All columns report results of a control function specification based on a
Oaxaca-Blinder decomposition, described in Kline (2011), analogous to the estimates in Column 4 of Table 5. Robust standard
errors, clustered at the sub-district level, are reported in parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.
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Dropping Close Non-Treated Neighborhoods. Alternatively, spillovers of the treatment effect between closely
located treated and non-treated neighborhoods could be producing our null results. Appendix Table A.6 shows
that our main results are mostly unchanged when we drop neighborhoods that are greater than 1 km but less than
2 km away from BRT stations in 2010.

Table A.6: ATT Estimates on Vehicle Ownership and Mode Choice: Dropping d ∈ (1, 2]

TREATED VS PLANNED + EVENTUAL

(1) (2) (3) (4)

∆ SHARE OWNING CAR -0.003 0.009 -0.001 -0.019
(0.028) (0.042) (0.036) (0.070)

∆ SHARE OWNING MOTORCYCLE 0.014 0.038 -0.012 0.055
(0.018) (0.032) (0.025) (0.036)

∆ MAIN MODE SHARE: BRT 0.033** -0.011 -0.005 -0.019
(0.013) (0.031) (0.030) (0.030)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.087*** 0.009 0.003 0.031
(0.019) (0.036) (0.039) (0.035)

∆ MAIN MODE SHARE: CAR 0.004 0.047 -0.016 -0.025
(0.022) (0.033) (0.022) (0.044)

∆ MAIN MODE SHARE: MOTORCYCLE -0.060** 0.004 0.043 0.083
(0.024) (0.049) (0.050) (0.067)

∆ MAIN MODE SHARE: TRAIN 0.013 -0.013 -0.012 0.000
(0.011) (0.022) (0.031) (0.022)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT 0.022 -0.024 -0.009 -0.018
(0.025) (0.039) (0.030) (0.041)

∆ MAIN MODE SHARE: TAXI -0.010 -0.002 -0.003 -0.025**
(0.007) (0.009) (0.009) (0.012)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT -0.001 -0.000 0.002 0.004
(0.004) (0.007) (0.005) (0.012)

CONTROLS . X X X
LOGISTIC REWEIGHTING . . X .
OAXACA-BLINDER . . . X

Notes: This table is identical to Table 5 except that we drop all communities that were greater than 1 km but less than 2 km
from the closest BRT station. Each cell reports the coefficient from a regression of the given dependent variable (listed in the
left-most column) on an indicator for whether or not the community is within 2 km of a BRT station. Column 2 includes pre-
treatment controls, and Column 3 reports a double-robust specification that both includes controls and reweights non-treated
communities by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated probability that the community is within 1 km of a BRT station.
Columns 4 reports a control function specification based on a Oaxaca-Blinder decomposition, described in Kline (2011). Robust
standard errors, clustered at the sub-district level, are reported in parentheses and are estimated using a bootstrap procedure,
with 1000 replications, in Column 4 to account for the generated κ̂ weights. */**/*** denotes significance at the 10% / 5% / 1%
levels.
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Distance to Destination Stations. Instead of focusing on origin communities as treated, in Appendix Table
A.7, we also assessed whether vehicle ownership and mode choice outcomes are impacted by the proximity of
BRT stations to commuters’ destination communities. To do so, we first assigned individuals in the JICA data to
their destination communities based on the trip data, instead of using their origin locations, and we re-estimated
the semi-parametric difference-in-differences model using revised treatment status definitions. Overall, we find
similar null results as in our main regression estimates.

Table A.7: ATT Estimates of BRT Station Proximity to Destinations: Vehicle Ownership and
Mode Choice

TREATED VS. PLANNED

(1) (2) (3) (4)

∆ SHARE OWNING CAR 0.018 0.035* 0.014 0.041*
(0.016) (0.020) (0.016) (0.022)

∆ SHARE OWNING MOTORCYCLE 0.005 0.005 -0.009 0.003
(0.014) (0.014) (0.014) (0.017)

∆ MAIN MODE SHARE: BRT 0.018** 0.011 0.003 0.019
(0.007) (0.009) (0.015) (0.012)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.043*** 0.016 0.005 0.031*
(0.011) (0.012) (0.016) (0.016)

∆ MAIN MODE SHARE: CAR 0.015 0.028** 0.003 0.037**
(0.012) (0.012) (0.014) (0.017)

∆ MAIN MODE SHARE: MOTORCYCLE -0.036** -0.001 0.018 0.004
(0.015) (0.017) (0.024) (0.017)

∆ MAIN MODE SHARE: TRAIN 0.006 -0.001 -0.010 0.000
(0.006) (0.008) (0.012) (0.007)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT 0.003 -0.037** -0.014 -0.061***
(0.014) (0.015) (0.015) (0.021)

∆ MAIN MODE SHARE: TAXI -0.001 -0.001 -0.001 -0.001
(0.004) (0.004) (0.006) (0.005)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT -0.004 0.001 0.000 0.002
(0.003) (0.003) (0.005) (0.004)

N 241 241 241 241

CONTROLS . X X X
LOGISTIC REWEIGHTING . . X .
OAXACA-BLINDER . . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the destination community is within 1 km of a BRT station. To construct these outcomes, we first
assigned individuals in the JICA data to their destination locations for trips based on the trip data, instead of using their origin
locations. Columns 1-4 restrict the non-treated sample to include only almost-treated destination communities. Column 2
includes pre-treatment controls, and Columns 3 reports a double-robust specification that both includes controls and reweights
almost-treated destination communities by κ̂ = P̂ /(1− P̂ ), where P̂ is the estimated probability that the community is within
1 km of a BRT station. Columns 4 reports a control function specification based on a Oaxaca-Blinder decomposition, described
in Kline (2011). Robust standard errors, clustered at the sub-district level, are reported in parentheses and are estimated using
a bootstrap procedure, with 1000 replications, in column 3 to account for the generated κ̂ weights. Sample sizes vary slightly
across outcomes but include as many 132 “treated” communities and 109 “almost-treated” communities. */**/*** denotes
significance at the 10% / 5% / 1% levels.
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Alternative Propensity Score Controls. We next explore the robustness of our estimates to different choices for
pre-determined controls used to estimate the propensity score (xc). Appendix Table A.8 reports how our original
Oaxaca-Blinder estimates (Column 4 of Table 5, reported in Column 1) change when we use only geographic
controls (Column 2), only demographic controls (Column 3), or the full set of pre-determined covariates (Column
4).49 Overall, our main results remain robust to these different specifications.

Table A.8: ATT Estimates: Robustness to Propensity Score Specifications

(1) (2) (3) (4)

∆ SHARE OWNING CAR -0.035 -0.026 -0.016 -0.048
(0.063) (0.059) (0.038) (0.066)

∆ SHARE OWNING MOTORCYCLE 0.010 -0.003 -0.007 -0.004
(0.028) (0.021) (0.022) (0.018)

∆ MAIN MODE SHARE: BRT 0.020 0.011 0.026 0.026
(0.019) (0.016) (0.019) (0.020)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.043* 0.038* 0.058** 0.051*
(0.025) (0.020) (0.027) (0.028)

∆ MAIN MODE SHARE: CAR -0.011 -0.014 -0.016 -0.021
(0.027) (0.027) (0.026) (0.025)

∆ MAIN MODE SHARE: MOTORCYCLE 0.027 0.022 -0.021 0.005
(0.030) (0.024) (0.030) (0.029)

∆ MAIN MODE SHARE: TRAIN 0.004 -0.005 0.013 0.014
(0.018) (0.014) (0.017) (0.018)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT -0.041 -0.017 0.001 -0.026
(0.029) (0.024) (0.025) (0.025)

∆ MAIN MODE SHARE: TAXI -0.003 0.001 -0.008 0.001
(0.007) (0.007) (0.006) (0.005)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT 0.002 0.002 0.004 0.000
(0.004) (0.004) (0.003) (0.005)

OAXACA-BLINDER X X X X
ORIGINAL PROPENSITY SCORE x X . . .
ONLY GEOGRAPHIC VARIABLES IN x . X . .
ONLY DEMOGRAPHIC VARIABLES IN x . . X .
FULL SET OF VARIABLES IN x . . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the community is within 1 km of a BRT station. All columns report estimates of a control function
specification based on a Oaxaca-Blinder decomposition, described in Kline (2011). Column 1 reports our original estimates
(Table 5, Column 4), while Columns 2-4 vary the set of controls used in estimating the propensity score. Robust standard
errors, clustered at the sub-district level, are reported in parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.

49The original, geographic, and demographic controls are described in Footnote 20. The full set of baseline controls includes
baseline measures of vehicle ownership, mode choice shares, incomes, and various light intensity measures.
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Machine-Learning Propensity Score Specifications. In Appendix Table A.9, we also implement two different
machine learning procedures to select controls for the propensity score and estimate treatment effects. Columns
1 and 2 report our original linear regression with controls and logistic reweighting estimates (Columns 2 and 3 of
Table 5). In Column 3, we implement the Belloni et al. (2014) post-double selection estimator, selecting separate
controls for the propensity score and the outcome equation by choosing from the large set of controls discussed in
Footnote 49 to minimize a Lasso objective function. In Columns 4 and 5, we used generalized boosted regression
models to estimate the propensity score, following McCaffrey et al. (2004). Point estimates and confidence intervals
under these approaches are very similar to our original results.

Table A.9: ATT Estimates on Vehicle Ownership and Mode Choice: Lasso Robustness

ORIGINAL LASSO TWANG

(1) (2) (3) (4) (5)

∆ SHARE OWNING CAR 0.001 -0.001 0.029 0.035 0.035
(0.042) (0.036) (0.046) (0.045) (0.046)

∆ SHARE OWNING MOTORCYCLE -0.001 -0.012 -0.023 0.003 -0.001
(0.023) (0.025) (0.020) (0.019) (0.019)

∆ MAIN MODE SHARE: BRT 0.013 -0.005 0.016 0.002 0.007
(0.020) (0.029) (0.019) (0.027) (0.025)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.022 0.003 0.029 0.012 0.019
(0.024) (0.042) (0.023) (0.036) (0.032)

∆ MAIN MODE SHARE: CAR 0.006 -0.016 0.004 0.009 0.007
(0.029) (0.022) (0.025) (0.035) (0.035)

∆ MAIN MODE SHARE: MOTORCYCLE 0.001 0.043 -0.036 0.015 0.003
(0.034) (0.051) (0.029) (0.039) (0.036)

∆ MAIN MODE SHARE: TRAIN -0.002 -0.012 0.004 -0.013 -0.006
(0.016) (0.033) (0.015) (0.028) (0.024)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT -0.017 -0.009 0.016 -0.010 -0.009
(0.032) (0.032) (0.024) (0.033) (0.032)

∆ MAIN MODE SHARE: TAXI -0.004 -0.003 0.001 -0.004 -0.004
(0.006) (0.009) (0.004) (0.005) (0.005)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT 0.002 0.002 -0.000 0.002 0.001
(0.003) (0.005) (0.004) (0.005) (0.005)

CONTROLS X X . X X
LOGISTIC REWEIGHTING . X . . .
LASSO DOUBLE-SELECTED CONTROLS . . X . .
TWANG REWEIGHTING (ES MEAN) . . . X .
TWANG REWEIGHTING (KS MAX) . . . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on
an indicator for whether or not the community is within 1 km of a BRT station. Columns 1 and 2 report our original linear
regression with controls and logistic reweighting estimates (columns 2 and 3 of Table 5). Column 3 provides Belloni et al. (2014)
post-double selection treatment effect estimates. We first select separate controls for the propensity score and the outcome
equation by choosing from the large set of controls discussed in Footnote 49 to minimize a Lasso objective function. We then
regress the outcome on the union of the selected controls. In columns 4 and 5, we used generalized boosted regression models
to estimate the propensity score, following McCaffrey et al. (2004). Column 4 uses the average standardized effect size of pre-
treatment variables for assessing balance between treated and control groups (es mean), while Column 5 uses the maximum
Kolmogorov-Smirnov p-values for weighted pre-treatment variables for assessing balance (ks max). Robust standard errors,
clustered at the sub-district level, are reported in parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.
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Treatment Effect Heterogeneity. Appendix Table A.10 explores the possibility that the muted effects were
driven by competing heterogeneous treatment effects. Separate analyses by gender (Columns 2 and 3), education
(Columns 4 and 5), and total monthly household expenditures (Columns 6 and 7) show that our main null results
are largely robust to these different splits.50

Table A.10: ATT on Vehicle Ownership and Mode Choice: Heterogeneity

MONTHLY HH
GENDER EDUCATION EXPENDITURE

ALL MALE FEMALE LOW HIGH LOW HIGH
(1) (2) (3) (4) (5) (6) (7)

∆ SHARE OWNING CAR -0.035 -0.028 -0.043 0.013 -0.047 -0.040 -0.094
(0.063) (0.064) (0.062) (0.067) (0.063) (0.070) (0.096)

∆ SHARE OWNING MOTORCYCLE 0.010 0.013 0.007 0.028 0.007 0.041 0.002
(0.028) (0.029) (0.027) (0.031) (0.030) (0.036) (0.031)

∆ MAIN MODE SHARE: BRT 0.020 0.021 0.020 0.024 0.020 0.021 0.020
(0.019) (0.019) (0.019) (0.018) (0.021) (0.022) (0.019)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.043* 0.048* 0.038 0.020 0.044 0.033 0.057**
(0.025) (0.026) (0.024) (0.027) (0.028) (0.032) (0.026)

∆ MAIN MODE SHARE: CAR -0.011 -0.010 -0.012 0.004 -0.004 -0.003 -0.051
(0.027) (0.028) (0.027) (0.021) (0.028) (0.018) (0.053)

∆ MAIN MODE SHARE: MOTORCYCLE 0.027 0.032 0.024 0.024 0.025 0.037 0.052
(0.030) (0.032) (0.029) (0.037) (0.029) (0.037) (0.043)

∆ MAIN MODE SHARE: TRAIN 0.004 0.005 0.003 -0.002 -0.000 -0.002 0.008
(0.018) (0.017) (0.018) (0.022) (0.019) (0.020) (0.018)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT -0.041 -0.047 -0.034 -0.053 -0.037 -0.045 -0.026
(0.029) (0.029) (0.029) (0.042) (0.029) (0.038) (0.027)

∆ MAIN MODE SHARE: TAXI -0.003 -0.002 -0.003 -0.001 -0.005 -0.014 0.002
(0.007) (0.006) (0.009) (0.009) (0.007) (0.023) (0.018)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT 0.002 0.003 0.002 0.003 0.001 0.006 -0.004
(0.004) (0.005) (0.004) (0.006) (0.005) (0.006) (0.006)

OAXACA-BLINDER X X X X X X X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the community is within 1 km of a BRT station. All columns report results of a control function
specification based on a Oaxaca-Blinder decomposition, described in Kline (2011). Column 1 reproduces our original results
(Column 4 of Table 5). In the remaining columns, the dependent variable is the community-level average of the outcome
variable for males (Column 2), females (Column 3), below median years of schooling (Column 4), above median years of
schooling (Column 5), below median monthly household expenditure (Column 6), and above median monthly household
expenditure (Column 7). Robust standard errors, clustered at the sub-district level, are reported in parentheses. */**/***
denotes significance at the 10% / 5% / 1% levels.

50We find some suggestive evidence, however, that the main or alternative BRT effect may be coming from males. Witoelar
et al. (2017) show that many females are concerned about safety while riding the BRT. TransJakarta has enacted several
policies trying to increase female ridership, including providing female-only BRT cars.
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Sorting. Sorting may drive our results if, for example, areas with BRT stations attracted migrants who were
less likely to demand public transportation. Appendix Table A.11 increasingly adds a series of (bad) demographic
controls to our original Oaxaca-Blinder specification (Table 5, Column 4). Column 2 controls for changes in den-
sity and migration shares, Column 3 adds changes in education shares, and Column 4 adds changes in monthly
household expenditure shares. Overall, the inclusion of these additional controls do not change our main find-
ings that close-proximity BRT communities had little changes in vehicle ownership and positive, though small,
changes in BRT mode shares. This is suggestive evidence that associated changes in neighborhood composition
cannot explain the lion’s share of TransJakarta’s muted impacts.51

Table A.11: ATT Estimates on Vehicle Ownership and Mode Choice: (Bad) Controls

TREATED VS. PLANNED + EVENTUAL

(1) (2) (3) (4)

∆ SHARE OWNING CAR -0.035 -0.032 -0.020 -0.011
(0.063) (0.067) (0.064) (0.050)

∆ SHARE OWNING MOTORCYCLE 0.010 0.009 0.013 0.023
(0.028) (0.028) (0.027) (0.025)

∆ MAIN MODE SHARE: BRT 0.020 0.019 0.009 0.012
(0.019) (0.019) (0.021) (0.022)

∆ MAIN OR ALTERNATIVE MODE SHARE: BRT 0.043* 0.040 0.024 0.028
(0.025) (0.026) (0.027) (0.027)

∆ MAIN MODE SHARE: CAR -0.011 -0.011 -0.008 -0.002
(0.027) (0.029) (0.029) (0.023)

∆ MAIN MODE SHARE: MOTORCYCLE 0.027 0.028 0.048 0.042
(0.030) (0.030) (0.037) (0.038)

∆ MAIN MODE SHARE: TRAIN 0.004 0.003 -0.005 -0.006
(0.018) (0.019) (0.022) (0.021)

∆ MAIN MODE SHARE: OTHER PUBLIC TRANSPORT -0.041 -0.040 -0.047 -0.045
(0.029) (0.029) (0.029) (0.030)

∆ MAIN MODE SHARE: TAXI -0.003 -0.002 0.001 -0.005
(0.007) (0.007) (0.007) (0.006)

∆ MAIN MODE SHARE: NON-MOTORIZED TRANSIT 0.002 0.003 0.002 0.003
(0.004) (0.005) (0.006) (0.006)

OAXACA-BLINDER X X X X
CONTROLS FOR ∆ DENSITY X X X
CONTROLS FOR ∆ MIGRANT SHARE X X X
CONTROLS FOR ∆ EDUCATION SHARES X X
CONTROLS FOR ∆ MONTHLY HH EXPENDITURE SHARES X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column)
on an indicator for whether or not the community is within 1 km of a BRT station. All columns report results of a control
function specification based on a Oaxaca-Blinder decomposition, described in Kline (2011). Column 1 reproduces our original
results (Column 4 of Table 5). In Column 2, we add controls for changes in community-level population density and the
share of recent province-level and district-level migrants. In Column 3, we add 7 controls for changes in different levels of
educational attainment. In Column 4, we add 7 additional controls for changes in the share of households with different
monthly household expenditures. Robust standard errors, clustered at the sub-district level, are reported in parentheses.
*/**/*** denotes significance at the 10% / 5% / 1% levels.

51If people with strong tastes for public transportation moved into treated areas, this would cause us to overestimate the
average impacts of the program in the absence of sorting. The absence of strong program impacts reduces concerns over this
type of sorting bias.
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A.3 Gravity Commuting Regressions

Figure A.5: Linear Gravity Regression: Residual-on-Residual Plot

Notes: This figure presents a residual-on-residual plot of the regression in Table 6, Panel A, Column 3. The y-axis depicts the
log commuting probability residual, after partialling out the origin and destination FE, and the x-axis depicts the travel time
residual, after partialling out the origin and destination FE. Each point on the graph represents a bilateral pair of origin and
destination sub-districts.
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Table A.12: Gravity Commuting Regressions (All Observations)

CROSS-SECTION

2002 2010 PANEL

PANEL A: FIXED EFFECTS LEAST SQUARES (1) (2) (3) (4) (5) (6)

TRAVEL TIME -0.036*** -0.037***
(0.001) (0.001)

BRT ROUTE (OD) 1.685*** 1.587*** 0.002 0.002
(0.127) (0.113) (0.064) (0.064)

N 6746 6746 5687 5687 10906 10906
ADJUSTED R2 0.608 0.217 0.523 0.179 0.841 0.841
ADJUSTED R2 (WITHIN) 0.533 0.068 0.451 0.056 0.004 0.003

PANEL B: POISSON PSEUDO ML W/ FE (1) (2) (3) (4) (5) (6)

TRAVEL TIME -0.095*** -0.121***
(0.003) (0.004)

BRT ROUTE (OD) 3.351*** 3.332*** 0.027 0.010
(0.162) (0.145) (0.065) (0.061)

N 6746 6746 5687 5687 10906 10906
WALD χ2 1306.436 429.312 1020.740 525.693 2.863 14.043
PSEUDO R2 0.199 0.038 0.204 0.048 0.230 0.230

ORIGIN FE YES YES YES YES . .
DESTINATION FE YES YES YES YES . .
ORIGIN × DESTINATION FE . . . . YES YES
YEAR FE . . . . YES YES
ORIG. DISTRICT × YEAR FE . . . . YES YES
DEST. DISTRICT × YEAR FE . . . . YES YES
O-D DENSITY CONTROLS . . . . . YES

Notes: This table reports estimates of the gravity commuting regression equation, (3). This table is similar to Table 6, except
that it uses all of the data, instead of dropping observations with fewer than 10 commuters. Columns 1-4 report cross-sectional
regressions and only include separate fixed effects for each origin and destination location. Columns 5-7 use panel data, with
a full set of origin × destination fixed effects and year fixed effects. Column 7 adds origin district × year fixed effects and
destination district × year fixed effects. Robust standard errors, two-way clustered at the origin and destination sub-district
level, are reported in parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.
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Table A.13: Gravity Commuting Regressions (Actual vs. Eventually Treated or Planned)

CROSS-SECTION

2002 2010 PANEL

PANEL A: FIXED EFFECTS LEAST SQUARES (1) (2) (3) (4) (5) (6)

TRAVEL TIME -0.034*** -0.034***
(0.001) (0.001)

BRT ROUTE (OD) 1.044*** 1.369*** 0.063 0.063
(0.152) (0.169) (0.064) (0.064)

N 3316 3316 3053 3053 6108 6108
ADJUSTED R2 0.716 0.530 0.596 0.434 0.840 0.840
ADJUSTED R2 (WITHIN) 0.422 0.043 0.328 0.059 0.003 0.003

PANEL B: POISSON PSEUDO ML W/ FE (1) (2) (3) (4) (5) (6)

TRAVEL TIME -0.084*** -0.098***
(0.002) (0.004)

BRT ROUTE (OD) 3.744*** 4.278*** 0.024 0.021
(0.421) (0.450) (0.064) (0.063)

N 3316 3316 3053 3053 6108 6108
WALD χ2 1160.453 79.174 583.371 90.565 1.288 10.955
PSEUDO R2 0.177 0.087 0.180 0.105 0.200 0.200

ORIGIN FE YES YES YES YES . .
DESTINATION FE YES YES YES YES . .
ORIGIN × DESTINATION FE . . . . YES YES
YEAR FE . . . . YES YES
ORIG. DISTRICT × YEAR FE . . . . YES YES
DEST. DISTRICT × YEAR FE . . . . YES YES
O-D DENSITY CONTROLS . . . . . YES

Notes: This table reports estimates of the gravity commuting regression equation, (3). This table is similar to Table 6, except that
it only uses bilateral subdistrict location pairs that begin and end within 1 km of actual, eventually constructed, or planned
stations. Columns 1-4 report cross-sectional regressions and only include separate fixed effects for each origin and destination
location. Columns 5-7 use panel data, with a full set of origin × destination fixed effects and year fixed effects. Column 7 adds
origin district × year fixed effects and destination district × year fixed effects. Robust standard errors, two-way clustered at
the origin and destination sub-district level, are reported in parentheses. */**/*** denotes significance at the 10% / 5% / 1%
levels.
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Table A.14: Gravity Commuting Regressions (Corridor 1 vs. Other Corridors)

CROSS-SECTION

2002 2010 PANEL

PANEL A: FIXED EFFECTS LEAST SQUARES (1) (2) (3) (4) (5) (6)

TRAVEL TIME -0.058*** -0.059***
(0.002) (0.002)

CORRIDOR 1 (OD) 2.398*** 2.575*** 0.009 0.006
(0.652) (0.360) (0.305) (0.318)

OTHER LINES (OD) 0.614** 0.616** -0.124 -0.124
(0.263) (0.248) (0.119) (0.120)

N 2210 2210 2210 2210 4402 4402
ADJUSTED R2 0.620 0.030 0.550 0.064 0.880 0.881
ADJUSTED R2 (WITHIN) 0.610 0.006 0.522 0.006 0.010 0.012

PANEL B: POISSON PSEUDO ML W/ FE (1) (2) (3) (4) (5) (6)

TRAVEL TIME -0.107*** -0.133***
(0.004) (0.005)

CORRIDOR 1 (OD) 4.985*** 5.684*** 0.241 0.188
(1.236) (1.521) (0.285) (0.246)

OTHER LINES (OD) 1.406*** 1.732*** -0.158 -0.108
(0.407) (0.406) (0.122) (0.113)

N 2210 2210 2210 2210 4402 4402
WALD χ2 847.069 18.993 672.641 23.990 20.698 33.137
PSEUDO R2 0.148 0.030 0.164 0.047 0.177 0.177

ORIGIN FE YES YES YES YES . .
DESTINATION FE YES YES YES YES . .
ORIGIN × DESTINATION FE . . . . YES YES
YEAR FE . . . . YES YES
ORIG. DISTRICT × YEAR FE . . . . YES YES
DEST. DISTRICT × YEAR FE . . . . YES YES
O-D DENSITY CONTROLS . . . . . YES

Notes: This table reports estimates of the gravity commuting regression equation, (3). This table is similar to Table 6, except that
it only uses bilateral subdistrict location pairs that begin and end within 1 km of corridor 1 or non-corridor 1 stations, and it
looks for separate effects for the different line quality. Columns 1-4 report cross-sectional regressions and only include separate
fixed effects for each origin and destination location. Columns 5-7 use panel data, with a full set of origin × destination fixed
effects and year fixed effects. Column 7 adds origin district × year fixed effects and destination district × year fixed effects.
Robust standard errors, two-way clustered at the origin and destination sub-district level, are reported in parentheses. */**/***
denotes significance at the 10% / 5% / 1% levels.
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A.4 Effects on Travel Times and Congestion

Robustness to Different Fixed Effects and Controls. In Appendix Table A.15, we show that our estimates of
β are robust to different controls and fixed effects. Panel A reports the overall BRT results, while Panel B reports
separate effects for different corridors. In column 1, we just control for origin-by-destination fixed effects. Column
2 adds separate controls for purpose-by-year, mode-by-year, and departure-hour-by-year effects. Column 3 adds
the control for the number of trips taken each year for each origin-destination pair. Column 4 additionally controls
for time-varying origin population density and destination population density. Column 5 is the specification we
report in columns 1 and 2 of Table 7. Overall, the effects remain robust to these different specifications.

Table A.15: Negative Spillovers: Robustness to Different Fixed Effects

PANEL A: OVERALL RESULTS (1) (2) (3) (4) (5)

BRT ROUTE 0.109*** 0.129*** 0.125*** 0.120*** 0.099***
(0.017) (0.017) (0.017) (0.017) (0.019)

N 1139216 1137900 1137900 1119916 1137898
ADJUSTED R2 0.432 0.449 0.449 0.447 0.464
ADJUSTED R2 (WITHIN) 0.001 0.001 0.001 0.001 0.001

PANEL B: CORRIDOR 1 VS. OTHER CORRIDOR (1) (2) (3) (4) (5)

CORRIDOR 1 -0.049 -0.017 -0.026 -0.033 0.003
(0.071) (0.074) (0.074) (0.074) (0.061)

OTHER CORRIDORS 0.121*** 0.141*** 0.137*** 0.131*** 0.104***
(0.016) (0.016) (0.016) (0.017) (0.019)

N 1139216 1137900 1137900 1119916 1137898
ADJUSTED R2 0.432 0.449 0.449 0.447 0.464
ADJUSTED R2 (WITHIN) 0.001 0.001 0.001 0.001 0.001

YEAR FE YES
ORIGIN × DESTINATION FE YES YES YES YES YES
PURPOSE × YEAR FE YES YES YES YES
DEPARTURE HOUR × YEAR FE YES YES YES YES
MODE × YEAR FE YES YES YES YES
NUMBER OF TRIPS CONTROL YES YES YES
ORIGIN DENSITY CONTROL YES
DESTINATION DENSITY CONTROL YES
ORIGIN × YEAR FE YES
DESTINATION × YEAR FE YES

Notes: Each cell in this regression corresponds to a separate estimate of β from the specification (4) to assess the differential
impact on travel times for trips originating and terminating within 1 km of a BRT station. The dependent variable is log travel
times, and the parameters are estimated from the pooled 2002 HVS / 2010 CS sample. In Panel A, we use all trips, while Panel
B restricts the sample to train trips. In column 1, we only control for year fixed effects and origin-by-destination community
FE (effectively controlling for distance). In column 2, we add controls for purpose × year, mode × year, and departure hour
× year. In column 3, we add a control for changes in the total number of trips made for each origin-by-destination pair over
time. In column 4, we add controls for origin and destination population density. Column 5 adds separate origin-by-year
and destination-by-year fixed effects. Robust standard errors, two-way clustered by origin and destination community, are
reported in parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.
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Robustness to Survey Weights. The results in Table 7 use survey weights to adjust for differences in popula-
tion origin and destination locations. We report the unweighted version of this table in online Appendix Table
A.16, which shows qualitatively similar results, although there are some differences in the magnitude of the point
estimates.

Table A.16: Negative Spillovers: Unweighted Results

PANEL A: ALL TRIPS (1) (2) (3) (4)

BRT ROUTE 0.092*** 0.026
(0.020) (0.028)

CORRIDOR 1 -0.009 -0.176***
(0.056) (0.062)

OTHER CORRIDORS 0.097*** 0.037
(0.020) (0.028)

N 1137898 1137898 696308 696308
ADJUSTED R2 0.444 0.444 0.407 0.407
ADJUSTED R2 (WITHIN) 0.001 0.001 0.001 0.001

PANEL B: TRAIN TRIPS (1) (2) (3) (4)

BRT ROUTE -0.040 0.217
(0.173) (0.462)

CORRIDOR 1 -0.083 0.376
(0.297) (0.531)

OTHER CORRIDORS -0.063 0.200
(0.171) (0.443)

N 35743 35743 22224 22224
ADJUSTED R2 0.431 0.431 0.383 0.383
ADJUSTED R2 (WITHIN) 0.001 0.001 0.000 0.000

ORIGIN × DESTINATION FE YES YES YES YES
ORIGIN × YEAR FE YES YES YES YES
DESTINATION × YEAR FE YES YES YES YES
NUMBER OF TRIPS CONTROL YES YES YES YES
ONLY NON PEAK-TIME TRIPS YES YES

Notes: Each cell in this regression corresponds to a separate estimate of β from the specification (4) to assess the differential
impact on travel times for trips originating and terminating within 1 km of a BRT station. The dependent variable is log travel
times, and the parameters are estimated from the pooled 2002 HVS / 2010 CS sample. In Panel A, we use all trips, while Panel
B restricts the sample to train trips. All columns include separate origin-by-year and destination-by-year fixed effects, and all
columns additionally include separate purpose-by-year effects, mode-by-year effects, and departure-hour-by-year indicators.
Columns 3 and 4 restrict the sample to only include non-peak time trips. Robust standard errors, two-way clustered by origin
and destination community, are reported in parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.
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Variation by Mode. In Appendix Table A.17, we report the impact of the BRT system on different transport
modes. We find effects that are large and significant for many road-based modes, including private cars (Panel A),
private motorcycles (Panel B), and traditional public buses (Panel C). As expected, the impact on private cars is
the largest, at 19.6 percent, relative to smaller effects on motorcycles and public buses. Our effects are also similar
if we look for the effect of the BRT system on all bus trips, including both BRT and non-BRT buses (Panel D). This
is explained by the slow BRT speeds along BRT routes, and the fact that non-BRT buses were using fewer traffic
lanes.

Table A.17: Negative Spillovers: Impact of BRT on Other Modes

PANEL A: PRIVATE CAR (1) (2) (3) (4)

BRT ROUTE 0.196*** 0.134
(0.060) (0.126)

CORRIDOR 1 -0.301 -1.279***
(0.284) (0.424)

OTHER CORRIDORS 0.207*** 0.163
(0.060) (0.127)

PANEL B: PRIVATE MOTORCYCLE (1) (2) (3) (4)

BRT ROUTE 0.105*** 0.042
(0.027) (0.044)

CORRIDOR 1 0.008 -0.218***
(0.066) (0.080)

OTHER CORRIDORS 0.108*** 0.055
(0.027) (0.045)

PANEL C: OTHER PUBLIC BUS (1) (2) (3) (4)

BRT ROUTE 0.090** 0.021
(0.040) (0.048)

CORRIDOR 1 0.009 -0.171
(0.096) (0.110)

OTHER CORRIDORS 0.103*** 0.041
(0.040) (0.049)

PANEL D: ANY BUS (1) (2) (3) (4)

BRT ROUTE 0.104*** 0.041
(0.034) (0.045)

CORRIDOR 1 0.015 -0.171*
(0.090) (0.099)

OTHER CORRIDORS 0.117*** 0.063
(0.034) (0.045)

ORIGIN × DESTINATION FE YES YES YES YES
ORIGIN × YEAR FE YES YES YES YES
DESTINATION × YEAR FE YES YES YES YES
NUMBER OF TRIPS CONTROL YES YES YES YES
ONLY NON PEAK-TIME TRIPS YES YES

Notes: Each cell in this regression corresponds to a separate estimate of β from the specification (4) to assess the differential
impact on travel times for trips originating and terminating within 1 km of a BRT station. The dependent variable is log
travel times, and the parameters are estimated from the pooled 2002 HVS / 2010 CS sample. Across the panels, different
samples of trips are used based on different trip modes: private cars (Panel A); private motorcycles (Panel B); other public bus
(Panel C); and any bus (including the traditional public bus and BRT, Panel D). All columns include separate purpose-by-year
effects, mode-by-year effects, and departure-hour-by-year indicators, as well as separate fixed effects for each origin × year
and destination × year. Columns 3 and 4 restrict the sample to only include non peak-time trips. Robust standard errors,
two-way clustered by origin and destination community, are reported in parentheses. */**/*** denotes significance at the 10%
/ 5% / 1% levels.
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HOV Expansion and Corridor 1 Results. We explore whether our findings for Corridor 1 were driven by an
expansion of the high-occupancy vehicle (HOV) policy (Hanna et al., 2017). The HOV policy in Jakarta was first
implemented in 1992 and until the end of 2003, only covered Sudirman and Thamrin Streets — a 6.4 km stretch
of road along BRT’s Corridor 1 route — and was operational only during the morning peak hours (7-10 am). In
December 2003, the governor extended the policy’s coverage to the whole 12.9 km of Corridor 1 route; furthermore,
its hours of operation were also expanded to include evening peak hours (4-7 pm in 2003 but changed to 4.30-7 pm
in September 2004).

We use the policy adjustments to examine its impact on travel time along Corridor 1. The spatial adjustment
introduced two sets of road segments along Corridor 1: the “original HOV” segments that had already been
covered at the time of our baseline in 2002; and the “new HOV” segments, which were included just before the
launch of the BRT system and after our baseline. These different segments of Corridor 1 are depicted in Appendix
Figure A.6.

Figure A.6: Corridor 1: Original HOV vs. Expanded HOV

Notes: Jakarta’s HOV policy in Jakarta was first implemented in 1992 and until the end of 2003, only covered Sudirman and
Thamrin Streets — a 6.4 km stretch of road along BRT’s Corridor 1 route — and was operational only during the morning
peak hours (7-10 am). In December 2003, the governor extended the policy’s coverage to the whole 12.9 km of Corridor 1
route; furthermore, its hours of operation were also expanded to include evening peak hours (4-7 pm in 2003 but changed to
4.30-7 pm in September 2004). The red portion of Corridor 1 (depicted above) refers to the “Original HOV” section of Corridor
1, while the yellow portions refer to the expanded or “new HOV” segments.

Appendix Table A.18 reports the results of the travel time regression where we replace the “Corridor 1” indi-
cator from Table 7 with its interaction with the “Original HOV” indicator. If the HOV policy drove our Corridor
1 results, we would expect to see a weaker negative spillover in the latter segment. We did not find any heteroge-
neous impact by segment both overall (Column 3) and for the original morning HOV hours of operation (Column
4). Overall, these results suggest that the HOV policy likely had little role in explaining the lack of negative
spillover along Corridor 1.
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Table A.18: Negative Spillovers: Historical HOV Policy

(1) (2) (3) (4)

BRT ROUTE 0.099***
(0.019)

CORRIDOR 1 0.003 -0.012 0.021
(0.061) (0.073) (0.099)

CORRIDOR 1 × ORIGINAL HOV 0.057 -0.070
(0.086) (0.148)

OTHER CORRIDORS 0.104*** 0.104*** 0.095***
(0.019) (0.019) (0.035)

N 1137898 1137898 1137898 239409
ADJUSTED R2 0.464 0.464 0.464 0.437
ADJUSTED R2 (WITHIN) 0.001 0.001 0.001 0.001

ORIGIN × DESTINATION FE YES YES YES YES
ORIGIN × YEAR FE YES YES YES YES
DESTINATION × YEAR FE YES YES YES YES
NUMBER OF TRIPS CONTROL YES YES YES YES
ONLY EARLY MORNING TRIPS (7-10 AM) . . . YES

Notes: This table is identical to the specification from Table 7, Panel A, and columns 1-2 repeat the corresponding estimate
from this table. In columns 3 and 4, we add an indicator for whether the Corridor 1 trip was between stations affected by the
historical HOV policy; the corresponding sections of Corridor 1 appear in Appendix Figure A.6. All columns include separate
origin-by-year and destination-by-year fixed effects, in addition to separate purpose-by-year effects, mode-by-year effects, and
departure-hour-by-year indicators. Column 3 uses all of the data, while column 4 restricts the sample to only include early
morning trips (7-10 AM). Robust standard errors, two-way clustered by origin and destination community, are reported in
parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.
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Closer Route Comparisons. One concern with the analysis in Table 7 is that trips along BRT corridors may not
be comparable to trips made further away. Appendix Table A.19 reports estimates of β by only using comparison
routes that begin and end within 10 km of a BRT station (Panel A), within 5 km of a BRT station (Panel B), and
within 3 km of a BRT station (Panel C). Although the magnitude of the effects vary somewhat, the point estimates
are still positive and significant. In Panel D, we compare trips along BRT corridors to trips along planned or
eventual BRT corridors, and again we find similar qualitative results, although our estimates are smaller and less
precise.

Table A.19: Negative Spillovers: Varying Treatment Comparisons

PANEL A: VS. OTHER TRIPS W/ O-D ≤ 10 KM OF BRTS (1) (2) (3) (4)

BRT ROUTE 0.101*** 0.037
(0.019) (0.028)

CORRIDOR 1 -0.003 -0.166***
(0.054) (0.061)

OTHER CORRIDORS 0.105*** 0.048*
(0.019) (0.028)

PANEL B: VS. OTHER TRIPS W/ O-D ≤ 5 KM OF BRTS (1) (2) (3) (4)

BRT ROUTE 0.085*** 0.018
(0.020) (0.029)

CORRIDOR 1 -0.021 -0.190***
(0.054) (0.062)

OTHER CORRIDORS 0.090*** 0.031
(0.020) (0.029)

PANEL C: VS. OTHER TRIPS W/ O-D ≤ 3 KM OF BRTS (1) (2) (3) (4)

BRT ROUTE 0.091*** 0.028
(0.022) (0.033)

CORRIDOR 1 0.008 -0.154**
(0.049) (0.063)

OTHER CORRIDORS 0.094*** 0.039
(0.022) (0.033)

PANEL D: VS. EVENTUAL AND PLANNED LINES (1) (2) (3) (4)

BRT ROUTE 0.044* 0.004
(0.024) (0.035)

CORRIDOR 1 -0.062 -0.190***
(0.056) (0.066)

OTHER CORRIDORS 0.048* 0.014
(0.024) (0.036)

ORIGIN × DESTINATION FE YES YES YES YES
ORIGIN × YEAR FE YES YES YES YES
DESTINATION × YEAR FE YES YES YES YES
NUMBER OF TRIPS CONTROL YES YES YES YES
ONLY NON PEAK-TIME TRIPS YES YES

Notes: This table is identical to Table 7, except that we restrict our estimate of β from the specification (4) to only use comparison
routes listed in the panel titles. In Panel A, we only use comparison routes that begin and end within 10 km of a BRT station. In
Panel B, we restrict the sample to routes that originate or terminate within 5 km of a BRT station, while in Panel C, we restrict
the sample to routes within 3 km of a BRT station. In Panel D, we restrict the sample to routes within 1 km of planned or
eventual corridors. The dependent variable is log travel times, and the parameters are estimated from the pooled 2002 HVS /
2010 CS sample. All columns include origin-by-year and destination-by-year fixed effects, as well as separate purpose-by-year
effects, mode-by-year effects, and departure-hour-by-year indicators. Columns 3 and 4 restrict the sample to only include non
peak-time trips. Robust standard errors, two-way clustered by origin and destination community, are reported in parentheses.
*/**/*** denotes significance at the 10% / 5% / 1% levels.
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Varying Treatment Distances. In Appendix Figure A.7, we re-estimate the overall BRT effect from equation
(4) by including several separate BRT distance indicators, where d ranges from 1 to 5 km, and their interaction
terms. After estimating this regression, we plot the coefficient estimates on these different indicators (i.e. β (d))
as a function of distance d. This figure demonstrates that the negative externality impacts of the BRT system are
highly localized. The travel time impacts of the system are positive for trips beginning and ending very close to
BRT stations, but dissipate at larger levels of distance.

Figure A.7: Negative Spillovers: Impact of BRT on Travel Times by Distance

Notes: This figure reports estimates of β from the specification (4) to assess the differential impact on travel times for trips
originating and terminating within d km of a BRT station. The dependent variable is the log travel times, and the parameters
are estimated from the pooled 2002 HVS / 2010 CS sample. In this specification, we include indicators for whether or not a
trip originates or terminates within d km of a BRT station, with d ∈ {1, 2, 3, 4, 5} and we plot separate effects of the different
distance-specific interaction terms. The regression includes separate purpose-by-year effects and separate departure-hour-
by-year indicators. Robust standard errors, two-way clustered by origin and destination community, are represented by the
dashed lines.
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Variation by Initial Levels of Traffic. In Appendix Table A.20, we explore the extent to which the BRT system’s
infrastructure impacted travel times differently on different routes based on their initial traffic levels. Intuitively,
routes that were already quite congested should have grown even worse as a consequence of the BRT taking away
lanes, while other routes should be less impacted. We first measure traffic on a given route from o to d at departure
hour h by constructing a delay measure (minutes per km, or the inverse of speed) using the 2002 trip data. We
then construct a high delay indicator equal to 1 if those trips had above median delay in 2002. Finally, we included
separate interaction terms of this high delay indicator with all of the BRT variables in (4). We find that the BRT
effects seem to be more pronounced for the high delay routes, as expected.

Table A.20: Negative Spillovers: Heterogeneity by Initial Traffic

(1) (2)

BRT ROUTE 0.099*** -0.059
(0.019) (0.046)

BRT ROUTE × HIGH DELAY 0.201***
(0.047)

N 1137898 1137898
ADJUSTED R2 0.464 0.471
ADJUSTED R2 (WITHIN) 0.001 0.014

ORIGIN × DESTINATION FE YES YES
ORIGIN × YEAR FE YES YES
DESTINATION × YEAR FE YES YES
NUMBER OF TRIPS CONTROL YES YES

Notes: This table is identical to the specification from Table 7, Panel A, and indeed, column 1 repeats the estimate from this
table, column 1. In column 2, we add an indicator for high delay and interact it with the BRT route indicator. This indicator
was constructed by first constructing a delay measure (minutes per km, or the inverse of speed) for a given route from o to d
at departure hour h using the 2002 trip data. The high delay indicator equal to 1 if those trips had above median delay in 2002.
Both columns include separate origin-by-year and destination-by-year fixed effects, in addition to separate purpose-by-year
effects, mode-by-year effects, and departure-hour-by-year indicators. Robust standard errors, two-way clustered by origin and
destination community, are reported in parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.
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A.5 Model and Counterfactual Results

Table A.21: Estimates of γ̃1 and γ̃2

(1) (2)

γ1 (BRT) -3.675*** -3.464***
(0.044) (0.054)

γ2 (TRAIN) -3.650*** -3.497***
(0.044) (0.049)

LOG TRAVEL TIMES−1 (SURFACE) - LOG TRAVEL TIMES−1 (m) 0.352***
(0.050)

N 9723 9723
N OF CLUSTERS 3241 3241
R2 0.348 0.352
R2 WITHIN 0.490 0.493
F STATISTIC 9240.844 6293.124

ORIGIN × DESTINATION FE X X

Notes: This table reports estimates of γ̃1 and γ̃2 from equation (15). We use ordinary least squares to obtain these estimates,
with separate origin × destination fixed effects as controls. Robust standard errors, clustered at the origin × destination level,
are reported in parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.
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Table A.22: Different Sets of Model Parameters

PANEL A: PREFERRED PARAMETERS VALUE SOURCE

θ 5.364 LINEAR GRAVITY +κ = 0.012
α -0.120 AHLFELDT ET AL. (2015, BERLIN)
β -0.100 AHLFELDT ET AL. (2015, BERLIN)
λ 0.055 IMPLIED, BASED ON ∆ LANE EST. AND LINEAR GRAVITY θ
γ1 0.646 IMPLIED, BASED ON γ̃ REGRESSIONS AND θ
γ2 0.652 IMPLIED, BASED ON γ̃ REGRESSIONS AND θ

STABILITY CONDITION, α YES
STABILITY CONDITION, β YES

PANEL B: TSIVANIDIS (2019) VALUE SOURCE

θ 3.020 TSIVANIDIS (2019, AVG. FOR HIGH AND LOW SKILL WORKERS)
α -0.120 AHLFELDT ET AL. (2015, BERLIN)
β -0.100 AHLFELDT ET AL. (2015, BERLIN)
λ 0.098 IMPLIED, BASED ON ∆ LANE EST. AND AVG. θ (TSIVANIDIS, 2019)
γ1 1.147 IMPLIED, BASED ON γ̃ REGRESSIONS AND θ
γ2 1.158 IMPLIED, BASED ON γ̃ REGRESSIONS AND θ

STABILITY CONDITION, α YES
STABILITY CONDITION, β YES

PANEL C: ALLEN AND ARKOLAKIS (2020) VALUE SOURCE

θ 6.830 AHLFELDT ET AL. (2015, BERLIN)
α -0.120 AHLFELDT ET AL. (2015, BERLIN)
β -0.100 AHLFELDT ET AL. (2015, BERLIN)
λ 0.071 ALLEN AND ARKOLAKIS (2020, SEATTLE)
γ1 0.507 IMPLIED, BASED ON γ̃ REGRESSIONS AND θ
γ2 0.512 IMPLIED, BASED ON γ̃ REGRESSIONS AND θ

STABILITY CONDITION, α YES
STABILITY CONDITION, β YES

PANEL D: PPML GRAVITY VALUE SOURCE

θ 12.091 PPML GRAVITY +κ = 0.012
α -0.120 AHLFELDT ET AL. (2015, BERLIN)
β -0.100 AHLFELDT ET AL. (2015, BERLIN)
λ 0.025 IMPLIED, BASED ON ∆ LANE EST. AND PPML θ
γ1 0.286 IMPLIED, BASED ON γ̃ REGRESSIONS AND θ
γ2 0.289 IMPLIED, BASED ON γ̃ REGRESSIONS AND θ

STABILITY CONDITION, α YES
STABILITY CONDITION, β YES

Notes: This table reports the parameter values and sources of different parameters used to assess the robustness of our coun-
terfactual welfare impacts, as reported in Table 8.
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Table A.23: Counterfactuals: Relative Delay

BRT TRAIN SURFACE

OVERALL CORR 1 OTH. CORR OVERALL OVERALL CORR 1 OTH. CORR

DESCRIPTION (1) (2) (3) (4) (5) (6) (7)

1 BASELINE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 REMOVING THE BRT 0.9999 0.9838 1.0001 0.9080
3 KEEPING BRT BUT REMOVING SPILLOVERS 1.0036 0.9814 1.0037 0.9965 0.9806 0.9957 0.9104
4 IMPROVING THE BRT, CORRIDOR 1 STANDARDS 1.0037 1.0029 1.0038 1.0010 0.9839 0.9996 0.9109
5 IMPROVING THE BRT, TRANSMILENIO STANDARDS 1.0485 1.0052 1.0486 1.0018 0.9840 0.9994 0.9130
6 BUILDING PLANNED LINES, LOW QUALITY 1.0000 1.0000 1.0000 1.0000 1.0069 1.0083 1.0000
7 BUILDING PLANNED LINES, HIGH QUALITY 1.0464 1.0022 1.0466 1.0011 0.9803 1.0000 0.8896

Notes: This table reports changes in average delay (i.e. d̂elay
kl

= delay′
kl
/delay

kl
, where delay

kl
is expressed in minutes per km) from different counterfactuals listed in the

row title. The columns report different measures of changes in average delay taken across different transport networks. For details on how changes in relative delay are
calculated, see Appendix Section E.10. These results correspond to those presented in Table 8, and the parameters for the simulation can be found in Appendix Table A.22,
Panel A.
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Table A.24: Counterfactuals: Welfare (Ŵ , Varying Parameters)

TSIVANIDIS ALLEN PPML
PREFERRED (2019) ARKOLAKIS (2020) GRAVITY

DESCRIPTION (1) (2) (3) (4)

1 BASELINE 1.00000 1.00000 1.00000 1.00000
2 REMOVING THE BRT 0.99957 1.00058 0.99959 0.99957
3 KEEPING BRT BUT REMOVING SPILLOVERS 1.00082 1.00275 1.00072 1.00017
4 IMPROVING THE BRT, CORRIDOR 1 STANDARDS 1.00083 1.00277 1.00074 1.00017
5 IMPROVING THE BRT, TRANSMILENIO STANDARDS 1.00148 1.00389 1.00133 1.00048
6 BUILDING PLANNED LINES, LOW QUALITY 0.99999 0.99998 1.00005 0.99999
7 BUILDING PLANNED LINES, HIGH QUALITY 1.00106 1.00185 1.00099 1.00050

PARAMETER VALUES (1) (2) (3) (4)

θ 5.364 3.020 6.830 12.091
α -0.120 -0.120 -0.120 -0.120
β -0.100 -0.100 -0.100 -0.100
λ 0.055 0.098 0.071 0.025
γ1 0.646 1.147 0.507 0.286
γ2 0.652 1.158 0.512 0.289

Notes: This table reports the changes in welfare from different counterfactuals listed in the row title under different parameter
assumptions. The columns in this table refer to different parameter sets, taken from the respective panels of Appendix Table
A.22. Panel A, our prefered set of tables, is also reported in Table 8.

Figure A.8: Baseline Model: Actual vs. Predicted Population

(A) RESIDENTIAL POPULATION (B) WORKPLACE POPULATION

Notes: These scatterplots report a comparison of actual and model baseline residential and workplace population counts,

where the baseline is simulated under no changes in transport costs (i.e. t̂ij = 1). The red lines indicate the 45 degree lines.
For the residential population graph, the bivariate regression coefficient is β̂ = 1.05, with an R2 = 0.9965. For the workplace
population graph, the bivariate regression coefficient is β̂ = 1.01, with an an R2 = 0.9971.

35



Figure A.9: Baseline vs. Removing the BRT: Actual vs. Predicted Population

(A) RESIDENTIAL POPULATION (B) WORKPLACE POPULATION

Notes: These scatterplots report a comparison of residential and workplace population counts between the baseline model and

the removing the BRT counterfactual, where the baseline is simulated under no changes in transport costs (i.e. t̂ij = 1). The
red lines indicate the 45 degree lines. For the residential population graph, the bivariate regression coefficient is β̂ = 1.0041,
with an R2 = 0.99998. For the workplace population graph, the bivariate regression coefficient is β̂ = 1.0009, with an an
R2 = 0.99997.

Figure A.10: Counterfactual ∆ Residential and Workplace Population Shares: Removing
the BRT

(A) ∆ RESIDENTIAL POPULATION SHARES (l̂R) (B) ∆ WORKPLACE POPULATION SHARES (l̂F )

Notes: These panels report changes in workplace and residential population shares from the counterfactual corresponding to
Table 8, row 2.
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Figure A.11: Counterfactual ∆ Residential and Workplace Population Shares: Keeping the
BRT but Removing Spillovers

(A) ∆ RESIDENTIAL POPULATION SHARES (l̂R) (B) ∆ WORKPLACE POPULATION SHARES (l̂F )

Notes: These panels report changes in workplace and residential population shares from the counterfactual corresponding to
Table 8, row 3.

Figure A.12: Counterfactual ∆ Residential and Workplace Population Shares: Corridor 1
Standards

(A) ∆ RESIDENTIAL POPULATION SHARES (l̂R) (B) ∆ WORKPLACE POPULATION SHARES (l̂F )

Notes: These panels report changes in workplace and residential population shares from the counterfactual corresponding to
Table 8, row 4.
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Figure A.13: Counterfactual ∆ Residential and Workplace Population Shares: TransMilenio
Standards

(A) ∆ RESIDENTIAL POPULATION SHARES (l̂R) (B) ∆ WORKPLACE POPULATION SHARES (l̂F )

Notes: These panels report changes in workplace and residential population shares from the counterfactual corresponding to
Table 8, row 5.

Figure A.14: Counterfactual ∆ Residential and Workplace Population Shares: Building
Planned Lines, Low Quality

(A) ∆ RESIDENTIAL POPULATION SHARES (l̂R) (B) ∆ WORKPLACE POPULATION SHARES (l̂F )

Notes: These panels report changes in workplace and residential population shares from the counterfactual corresponding to
Table 8, row 6.
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Figure A.15: Counterfactual ∆ Residential and Workplace Population Shares: Building
Planned Lines, High Quality

(A) ∆ RESIDENTIAL POPULATION SHARES (l̂R) (B) ∆ WORKPLACE POPULATION SHARES (l̂F )

Notes: These panels report changes in workplace and residential population shares from the counterfactual corresponding to
Table 8, row 7.
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B Data Appendix

Commuter Travel Surveys. Our trip-level data come from two cross-sectional surveys of households con-
ducted by the Japan International Cooperation Agency (JICA) study teams in 2002 and 2010. The 2002 survey,
known as the Home Visit Survey (HVS), was part of the Study on Integrated Transportation Master Plan (SITRAMP).
SITRAMP was a technical assistance project intended to anticipate future transportation challenges in the Ja-
bodetabek metropolitan area. HVS was collected, among others, to establish a person-trip origin-destination
(PTOD) matrices for urban transportation planning purposes (JICA, 2004b).

The 2002 HVS’s sampling strategy was designed to capture trip characteristic information for approximately
3 percent of the Jabodetabek population. Ultimately, its sample included 163,334 households across 1,485 commu-
nities (kelurahan) (JICA, 2004b, Table 1.8.3). HVS collected information on the demographic and socio-economic
characteristics of households and their members, as well as trip information of household members. The trip in-
formation module included questions on the origin and destination of trips as well as their modes of transport
(including transfers), and departure and arrival times. According to background reports, the 2002 survey was a
massive undertaking, with 2,418 enumerators each making approximately 70 home visits over a 3 month period
(July-September) (JICA, 2004a).

For 2010, the trip-level data come from the 2010 Commuter Survey (CS). This survey was also collected by the
JICA study team under the Jabodetabek Urban Transport Policy Integration Project (JUTPI). The 2010 CS was similarly
designed to capture trip characteristics for 3 percent of the Jabodetabek population (or around 180,000 households
in 2010). Its final sample included around 180,000 households in 1,499 communities (OCAC, 2011, Table 1.2.1).

As an update to the HVS data, the survey contained modules that were similar to the 2002 HVS (OCAC, 2011).
The survey was also another large data collection effort, employing 1,800 enumerators, each of whom surveyed
approximately 100 households over a 6 month period (March-August). The 2010 field team also consisted of 65
supervisors, 13 field coordinators, and 4 region chiefs to administer the survey work (OCAC, 2011).

Census Data. We use the 2000 and 2010 population census microdata to construct aggregate community-level
characteristics. These population censuses provide complete enumerations of the Indonesian population. These
censuses collect individual-level demographic information such as age, gender, education, and migration status
in the past five years. In addition, they also collect information about the physical characteristics of buildings and
individual residences. These datasets were collected by Indonesia’s national statistical agency, BPS Indonesia.

Potensi Desa (Podes). To examine the pre-treatment trends in vehicle ownership between treated and almost-
treated communities before BRT implementation, we use the 1996 and 2000 village census data known as Potensi
Desa or Podes. Podes collects socio-economic and demographic characteristics from every single Indonesian vil-
lage by interviewing its village official (typically, the village head). It is collected triennially by Indonesia’s national
statistical agency, BPS Indonesia.

NOAA Data on Light Intensity. To proxy for economic activities at the local level, we make use of an innovative
technique, developed by Henderson et al. (2012), which uses satellite data on nighttime lights. Daily between 8:30
PM and 10:00 PM local time, satellites from the United States Air Force Defense Meteorological Satellite Program
(DMSP) record the light intensity of every 30-arc-second-square of the Earth’s surface (corresponding to roughly
0.86 square kilometers). DMSP cleans this daily data, dropping anomalous observations, and provides the public
with annual averages of light intensity from multiple satellites. After averaging the data across multiple satellites,
we obtain annual estimates of light intensity for every 30-arc-second square of the Earth’s surface in 1992 and 2002.
We construct log average night light intensity in 1992 as a pre-treatment baseline measure of each community’s
development and we measure the log difference between average night light intensity in 1992 and 2002 as a proxy
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for urban growth.51

Elevation. We construct the topographical variables using raster data from the Harmonized World Soil Database
(HWSD), Version 1.2 (Fischer et al., 2008). The digital elevation map records the median elevation (in meters) of
each 5 arc minute × 5 arc minute pixel (roughly 10 km2).52

Ruggedness. A 30 arc-second ruggedness raster was computed for Indonesia according to the methodology
described by Sappington et al. (2007). The authors propose a Vector Ruggedness Measure (VRM), which captures
the distance or dispersion between a vector orthogonal to a topographical plane and the orthogonal vectors in
a neighborhood of surrounding elevation planes. To calculate the measure, one first calculates the x, y, and z

coordinates of vectors that are orthogonal to each 30-arc second grid of the Earth’s surface. These coordinates are
computed using a digital elevation model and standard trigonometric techniques.

Given this, a resultant vector is computed by adding a given cell’s vector to each of the vectors in the sur-
rounding cells; the neighborhood or window is supplied by the researcher. Finally, the magnitude of this resultant
vector is divided by the size of the cell window and subtracted from 1. This results in a dimensionless number
that ranges from 0 (least rugged) to 1 (most rugged).53

For example: on a (3 × 3) flat surface, all orthogonal vectors point straight up, and each vector can be rep-
resented by (0, 0, 1) in the Cartesian coordinate system. The resultant vector obtained from adding all vectors is
equal to (0, 0, 9), and the VRM is equal to 1 − (9/9) = 0. As the (3 × 3) surface deviates from a perfect plane, the
length of the resultant vector gets smaller, and the VRM increases to 1.

BRT Capital and Operating Costs. To obtain cost parameters for counterfactual exercises, we used a capital cost
value for Corridor 1 of $1.512 million per km, inflating the figure reported in Hidalgo and Graftieaux (2008) to 2010
dollars. This same paper also reports a value for TransMilenio’s capital costs of $8.86 million per km (adjusted to
2010 dollars).

For other corridor capital costs, local news sources reported the costs for 36.88 km of Corridors 2-3 to be $66.78
million, or 1.81 million per km in 2004 dollars.54 The capital costs for 54.33 km of Corridors 4-7 were reported to
be $95.29 million, or 1.75 million per km in 2006 dollars.55 The capital costs for 74.9 km of Corridors 8-10 were
reported to be $35.36 million, or 0.47 million per km in 2008 dollars.56 Converting these figures to 2010 dollars
and taking a weighted average by km, we obtain an average cost per km value of $1.297 for other corridor capital
costs. Note that the difference between actual and counterfactual construction costs can be tricky to interpret; for
instance, one reason why the other corridor construction costs were relatively similar to Corridor 1 costs could
have been that it was easier to construct Corridor 1 because it was originally a wider route than the other areas.

For all counterfactuals, we also assumed that the system’s operating costs would be $45.01 million per year
in 2010 dollars. This figure is consistent with data from Jakarta’s Department of Public Transportation (Dinas Per-

51The DMSP-OLS Nighttime Lights Time Series Version 4 datasets can be downloaded here: http://ngdc.noaa.gov/eog/
dmsp/downloadV4composites.html.

52Raster files from the HWSD project are publicly available at http://www.fao.org/soils-portal/soil-survey/
soil-maps-and-databases/harmonized-world-soil-database-v12/en/.

53The authors have generously provided a Python script for computing their Vector Ruggedness Measure (VRM) in ArcView.
The script and detailed instructions for installation can be found here: https://www.arcgis.com/home/item.html?
id=9e4210b3ee7b413bbb1f98fb9c5b22d4.

54https://news.detik.com/berita/d-158050/biaya-pembangunan-koridor-ii-dan-iii-busway-rp-600-miliar,
accessed on 5/4/2021.

55https://news.detik.com/berita/d-514013/sutiyoso-ultimatum-menhub-canangkan-subway-tahun-ini-juga,
accessed on 5/4/2021.

56https://megapolitan.kompas.com/read/2008/01/16/21411358/dibangun.63.halte.busway, accessed on
5/4/2021.
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hubungan), which reports a 71 percent cost recovery set against a total revenue of $63.392 million in 2010 dollars.57

While we do not vary operating costs in simulations, these costs could either increase or decrease depending on
how the BRT adjustments impacted ridership, the number of stations, and the number of buses being operated.

57Dinas Perhubungan Dalam Angka 2011 from https://jakarta.go.id/dokumen/46/
dinas-perhubungan-dalam-angka-tahun-2011, accessed on 5/2/2021.
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C Characterizing Greater Jakarta’s Urban Form

This section describes Greater Jakarta’s evolving spatial structure and trends in commuting patterns, providing
context for the potential impacts of a BRT system. We first summarize economic and demographic characteristics
of the metropolitan area. We then link these characteristics to a description of residents’ commuting mode choices.
Finally, we summarize their commuting trips.

Residential and Workplace Locations. Employment in Jakarta is largely service-sector oriented, and most em-
ployers are located in DKI Jakarta. Appendix Figure C.1, Panel A presents a map of employer locations, showing
the probability that an individual works in a community based on the 2010 CS data. The greatest employment
probabilities are found in the center of the city; however, some employment has shifted away from the city center
and other centers are located in different places in the metropolitan region. From 2000 to 2010, Greater Jakarta
also experienced rapid population growth, adding 7 million more people to its total population. This amounts to
an annual population growth rate of 3.6 percent per year. However, growth was more pronounced in the periph-
eral regions of the metropolitan area, outside of DKI Jakarta borders (depicted in thick black) and symptomatic of
urban sprawl. Panel B of Appendix Figure C.1 depicts population growth across communities, with darker areas
corresponding to faster growth.

Because such a large share of Greater Jakarta’s population does not reside in DKI Jakarta but instead lives in
the surrounding municipalities, the TransJakarta BRT system does not adequately connect workers and firms. In
Appendix Table C.1, we report the share of the population in 2002 that lives and works within different distances
of BRT stations (built by 2010). In 2002, only 12.7 percent of the population of Greater Jakarta lived and worked
within 1 km of a BRT station. This share fell to 9.4 percent in 2010, as workers and firms decentralized away from
the central city where BRT stations are located.

Vehicle Ownership and Commuting Mode Choice. Between 2002 and 2010, the number of workers living
farther from their jobs increased, stimulating demand for travel (Turner, 2012). Over the same period, Jakarta also
experienced a dramatic increase in vehicle ownership, especially motorcycles. Panel A of Appendix Figure C.2
shows that the share of households owning at least one motorcycle more than doubled, from 37.0 percent in 2002
to a staggering 75.8 percent in 2010. Although some of the expansion in motorcycle ownership could be explained
by per-capita income gains, another explanation may be new loan schemes and expanded consumer credit, which
enabled even the lowest income households to own motorcycles (Yagi et al., 2012).58 Car ownership also increased
from 2002 to 2010, but not as dramatically as motorcycle ownership.59

To measure mode choice, we rely on a question in both surveys that asks the respondent to name the mode
they most commonly use for intra-city travel purposes.60 Using this definition, Panel B of Appendix Figure C.2
shows how changes in vehicle ownership significantly altered mode choice patterns. In 2002, the traditional public
bus system was the most popular commuting mode with a 52.3 percent share, but by 2010, this share had fallen to
23.4 percent.61 By 2010, the most popular commuting mode was private motorcycles. During the sample period,
motorcycle’s mode share more than doubled, rising from 21.5 percent in 2002 to 50.8 percent in 2010. In a congested

58Yagi et al. (2012) also document rising motorcycle ownership but use a different data source: the number of registered vehicles
in DKI Jakarta. During the same time, the number of registered cars doubled, while the number of registered motorcycles
more than quadrupled. Note also that according to the 2010 CS over 20 percent of households owned more than one motor-
cycle, and nearly one third of the lowest-income households surveyed owned a motorcycle.

59Income growth also explains some of these findings, and Senbil et al. (2007) shows that the share of motorcycle and car
ownership in Greater Jakarta increases with income. However, unlike the case of cars, the share of motorcycle ownership
actually declines for the top 3 income groups in the JICA data. See Appendix Figure C.3 for more detail.

60Other measures, such as those constructed from trip data to calculate the mode consuming the most distance or the most time
during an individual’s trips, yield similar results.

61The traditional public bus system consists of several independent private bus operators with fleets of minivans and small
buses. Although they follow set routes in Jakarta, traditional public buses do not keep a fixed schedule, and drivers are
compensated on a per-fare basis, so that they compete for riders. Traditional buses make stops anywhere they want to pick
up and drop off customers, instead of using designated bus stops, which the city has not provided (Radford, 2016).
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traffic environment, motorcycles may offer commuters a way to weave through traffic and reduce travel times. In
2010, the large share of motorcycles substantially dwarfs the small portion of commuters who mainly ride the
TransJakarta BRT system (4.3 percent).62

Commuting Characteristics. Appendix Table C.2 contains summary statistics for all well-defined trips. Overall,
the average trip in 2002 had a distance of 4 km, with an average travel time of over 30 minutes and a slow speed
of just over 8 km per hour. By 2010, trip distances had increased slightly, to an average of 4.7 km, travel times fell
slightly to an average of 29 minutes, and average speeds increased to nearly 12 km per hour. In 2002, 50 percent
of trips in the data took place within a single community, and this share increased slightly in 2010.

In Appendix Table C.3, we regress log travel times on trip characteristics and a year indicator to measure
overall changes in travel times. Column 1, which only controls for distance, demonstrates that overall travel times
fell by 11.6 percent between 2002 and 2010. However, nearly all of this reduction can be explained by differences
in trip characteristics, departure times, mode choices, and the mix of origins and destinations. When we control
for these effects in Column 4, the time savings fall to 3.2 percent. Although statistically significant, this effect is not
economically meaningful, representing only a minute of time savings for an average trip duration.

62Note that BRT’s small mode share also persists in data collected subsequent to our sample, even after TransJakarta was
transferred to private management and service quality improved. In 2014, BPS conducted a commuter survey in Greater
Jakarta and found that the overall TransJakarta mode share was only 2.5 percent (see Appendix Figure C.4). Witoelar et al.
(2017) also find similar mode share results for a survey of females in DKI Jakarta in 2016.
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Table C.1: Residence and Workplace Distance to BRT Stations (2002)

WORKPLACE DISTANCE TO
BRT STATIONS (KM)

0-1 1-2 2-3 3-4 4-5 5+

0-1 12.7 2.7 1.0 0.5 0.4 1.4
RESIDENTIAL 1-2 2.8 7.0 0.8 0.4 0.3 0.8

DISTANCE 2-3 1.1 0.9 3.4 0.3 0.2 0.5
TO BRT 3-4 0.6 0.5 0.3 2.3 0.2 0.4

STATIONS (KM) 4-5 0.5 0.3 0.2 0.2 1.7 0.6
5+ 2.5 1.1 0.6 0.4 0.7 49.7

Notes: This table reports the percent of the population in 2002 and living and working within different distances of BRT stations built by mid
2010, based on the JICA data. The rows and columns list different bins of distances to BRT stations, with distances measured in kilometers.

Table C.2: Summary Statistics on Well-Defined Trips

2002 (N = 653,814) 2010 (N = 541,630) ∆

PANEL A: ALL TRIPS MEAN (SD) MEAN (SD) p-VALUE

DISTANCE FROM ORIGIN TO DESTINATION (KM) 4.00 (5.73) 4.69 (6.87) 0.000
TRIP WITHIN KELURAHAN (0 1) 0.50 (0.50) 0.51 (0.50) 0.000
TRAVEL TIME (MIN) 31.56 (27.49) 28.70 (24.49) 0.000
SPEED (KM / HOUR) 8.29 (10.13) 11.80 (32.63) 0.000

Notes: Authors’ calculations on well-defined trips, using the 2002 HVS and the 2010 CS trip data. The sample of well-defined
trips consists of all trips that contain information on travel times, origin and destination communities (kelurahan), modes,
and trip purposes. Each observation is a trip, and means are computed using survey weights. The p-values in this table are
computed by conducting a two-sided equality of means t-test between years.
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Table C.3: Log Travel Time Regressions

(1) (2) (3) (4)

YEAR IS 2010 (0 1) -0.116*** -0.107*** -0.087*** -0.080***
(0.007) (0.009) (0.010) (0.009)

DISTANCE FROM ORIGIN TO DESTINATION (KM) 0.074*** 0.068*** 0.063*** -0.005***
(0.001) (0.001) (0.001) (0.001)

TRAIN -0.058*** -0.029** -0.005
(0.013) (0.014) (0.013)

OTHER PUBLIC TRANSPORT (BUS / VAN) -0.098*** -0.038** -0.001
(0.014) (0.015) (0.014)

TAXI / OJEK / BAJAJ -0.195*** -0.069*** -0.012
(0.018) (0.017) (0.016)

PRIVATE CAR 0.095*** 0.058*** 0.014
(0.017) (0.016) (0.015)

PRIVATE MOTORCYCLE -0.108*** -0.089*** -0.085***
(0.014) (0.015) (0.014)

NON-MOTORIZED TRANSIT -0.119*** -0.089*** -0.034*
(0.019) (0.021) (0.020)

TO SCHOOL -0.093*** -0.088*** -0.003
(0.005) (0.007) (0.005)

FROM WORK 0.003 0.040*** 0.063***
(0.006) (0.007) (0.006)

FROM SCHOOL -0.044*** -0.016* 0.073***
(0.007) (0.008) (0.006)

N 1137900 1137900 1137900 1137900
ADJUSTED R2 0.236 0.268 0.315 0.447
ADJUSTED R2 (WITHIN) 0.216 0.032

DEPARTURE HOUR FE YES YES YES
ORIGIN FE YES
DESTINATION FE YES
ORIGIN × DESTINATION FE YES

Notes: This table reports the results of a regression of log travel times on trip characteristics, pooling the 2002 HVS / 2010 CS
trip data. Column 1 is the unadjusted comparison, including only distance and a 2010 year dummy. Column 2 includes several
different trip characteristics (with coefficients reported), while Column 3 includes separate origin and destination fixed effects.
Column 4 includes fixed effects for origin-by-destination pairs; identification of the distance coefficient comes from variation in
trip distances within an origin-destination route. All columns include separate purpose-by-year effects and separate indicators
for each possible departure hour. Robust standard errors, two-way clustered by origin and destination community, are reported
in parentheses. */**/*** denotes significance at the 10% / 5% / 1% levels.
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Figure C.1: Employment Shares and Population Growth by Community

(A) EMPLOYMENT SHARE (2010) (B) POPULATION GROWTH (2000-2010)

Notes: Authors’ calculations, using data from the 2010 CS data in Panel A and the 2000 and 2010 population censuses in Panel B.
Darker shading corresponds to greater unconditional employment probabilities (Panel A) and more rapid population growth,
in percent changes (Panel B). The thick dark border denotes the boundaries of DKI Jakarta, the special capital region.
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Figure C.2: Changes in Vehicle Ownership and Mode Choice

(A) PANEL A: VEHICLE OWNERSHIP

(B) PANEL B: MODE CHOICE

Notes: Authors’ calculations, using data from the 2002 and 2010 JICA surveys. All percentages are calculated using survey
weights.
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Figure C.3: Vehicle Ownership by Income, 2002-2010

(A) MOTORCYCLES

(B) CARS

Notes: This figure plots the share of households owning different types of motor vehicles by nominal income (in millions of
Indonesian Rupiah) for 2002 and 2010, based on the JICA data.
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Figure C.4: Mode Choice in 2014

Notes: Authors calculations, based on BPS (2014). Note that these data are not completely comparable to those reported in
Figure C.2, Panel B, because BPS (2014) did not report the use of taxi/ojek/bajaj separately in tabulating the results of the 2014
Jakarta Commuter Survey.
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D ATT Effects of Station Proximity: Demographics and Housing

In Appendix Table D.1, we report similar results of the effects of TransJakarta BRT station proximity on demo-
graphic and housing outcomes. We find no significant effects on changes in population density or average years
of schooling. We also find no significant effects on changes in total employment, where employment is measured
from the 2002 and 2010 JICA data as estimates of the total number of people who work in each community. The
estimates on changes in the shares of recent migrants are also insignificant, though the results are fairly impre-
cisely estimated. The growth of lower-middle income residents (monthly incomes between 1 and 1.5 million Rp.)
increased by 4.3 percent in response to the BRT system, but the effects of the BRT system on the growth of the other
income shares were insignificantly different from zero.

To construct housing outcomes, we use the 2000 and 2010 Census data, which include information on the
household’s building type. These building types are aggregated into three categories: (1) single family homes;
(2) multi-family units (containing 2-4 households); or (3) larger residential structure with 5 or more households
(which we term a “high rise” residence). Housing characteristics were also recorded, including whether or not the
home had access to piped water, its own or a shared toilet, and state-provided electricity.

We find that almost treated areas experienced a 14.1 percent increase in residential building construction
growth relative to treated areas. This growth seems strongest for single family homes, as there were no differences
larger multi-family or high rise residential structures, and on the whole no differences in population density. This
evidence suggests that instead of attracting higher density, transit-oriented development in areas near stations,
lower density sprawl seems to have taken place in non-treated areas.

These results on demographic and housing outcomes survive a similar set of robustness checks as do our
main results on mode choice and vehicle ownership (results available upon request).
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Table D.1: ATT Estimates of BRT Proximity: Demographic, Employment, and Housing

TREATED VS. PLANNED

(1) (2) (3) (4)

∆ POPULATION DENSITY -0.123** -0.002 0.025 -0.003
(0.051) (0.028) (0.029) (0.039)

∆ LOG TOTAL EMPLOYMENT -0.167* -0.082 -0.168 -0.028
(0.095) (0.117) (0.151) (0.129)

∆ % RECENT MIGRANTS FROM W/IN JAKARTA 4.572*** 0.288 0.856 0.870
(1.473) (0.796) (0.763) (1.164)

∆ % RECENT MIGRANTS FROM OUTSIDE JAKARTA 4.111*** 0.086 0.827 0.299
(1.384) (0.787) (0.664) (1.042)

∆ AVERAGE YEARS OF SCHOOLING -0.282*** 0.068* 0.052 0.072
(0.096) (0.038) (0.049) (0.064)

∆ LOG NUMBER OF RESIDENTIAL BUILDINGS -0.475*** -0.137* -0.008 -0.141*
(0.115) (0.069) (0.028) (0.082)

∆ LOG NUMBER OF SINGLE FAMILY BUILDINGS -1.461*** -0.612** -0.107* -0.434
(0.516) (0.301) (0.065) (0.331)

∆ LOG NUMBER OF MULTI-FAMILY BUILDINGS -0.702*** 0.009 0.051 -0.016
(0.182) (0.103) (0.048) (0.105)

∆ LOG NUMBER OF HIGH RISE BUILDINGS 0.066 0.017 -0.015 -0.040
(0.131) (0.089) (0.130) (0.130)

∆ % BUILDINGS WITH CLEAN WATER -0.003 0.013 0.020 -0.004
(0.025) (0.017) (0.016) (0.019)

∆ % BUILDINGS WITH ELECTRICITY -0.009 0.008** 0.005* 0.006
(0.006) (0.004) (0.003) (0.005)

∆ % BUILDINGS WITH OWN TOILET -0.042* 0.003 0.004 -0.009
(0.023) (0.009) (0.009) (0.016)

MONTHLY INCOME < RP. 1 MIL, DELTA -0.032 0.015* 0.014 0.010
(0.024) (0.009) (0.009) (0.011)

MONTHLY INCOME RP. 1-1.5 MIL, DELTA 0.030 0.045** 0.047*** 0.043*
(0.019) (0.019) (0.017) (0.022)

MONTHLY INCOME RP. 1.5-2 MIL, DELTA -0.028* -0.024 -0.028 -0.024
(0.017) (0.018) (0.022) (0.022)

MONTHLY INCOME RP. 2-3 MIL, DELTA -0.011 0.001 0.014 0.017
(0.018) (0.015) (0.017) (0.018)

MONTHLY INCOME RP. 3-4 MIL, DELTA 0.006 -0.006 -0.003 -0.008
(0.012) (0.014) (0.012) (0.015)

MONTHLY INCOME RP. 4-5 MIL, DELTA 0.015 -0.008 -0.006 0.000
(0.010) (0.011) (0.018) (0.013)

MONTHLY INCOME > RP. 5 MIL, DELTA 0.025 -0.019 -0.034 -0.025
(0.021) (0.022) (0.023) (0.024)

N 241 241 241 241

CONTROLS . X X X
LOGISTIC REWEIGHTING . . X .
OAXACA-BLINDER . . . X

Notes: Each cell reports the coefficient from a regression of the given dependent variable (listed in the left-most column) on an
indicator for whether or not the community is within 1 km of a BRT station. Columns 1-4 restrict the non-treated sample to
include only almost-treated communities. Column 2 includes pre-treatment controls, and Columns 3 reports a double-robust
specification that both includes controls and reweights non-treated communities by κ̂ = P̂ /(1 − P̂ ), where P̂ is the estimated
probability that the community is within 1 km of a BRT station. Columns 4 reports a control function specification based
on a Oaxaca-Blinder decomposition, described in Kline (2011). Robust standard errors, clustered at the sub-district level, are
reported in parentheses and are estimated using a bootstrap procedure, with 1000 replications, in column 3 to account for
the generated κ̂ weights. Sample sizes vary slightly across outcomes but include as many 132 “treated” community and 109
“almost-treated” community. */**/*** denotes significant at the 10% / 5% / 1% levels.
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E Model Appendix

In this appendix, we present our modest extension to the quantitative spatial framework introduced by Allen and
Arkolakis (2020) to allow for multiple congestible transit networks, generalizing the two-network case presented
in Fan et al. (2021). The model is presented here in detail, elaborating on the treatment discussed in the text.
Derivations to many of the key results can be found below in Appendix Section E.

E.1 Setup: Individuals and Routes

Let ν ∈ [0, 1] index individuals, and let i ∈ {1, 2, ..., N} index locations (sub-districts, or kecamatan) in Jabodetabek.
The city has an exogenous (fixed) aggregate population of commuters, given by L. An individual who lives in
location i, works in block j, and commutes via route r of length Kr has the following indirect utility:

Vij,r (ν) =

[
uiwj∏Kr

l=1 trl−1,rl

(
mrl−1,rl

)] εij,r (ν) (E.1)

In this expression, ui denotes the amenity value of residential location i, wj denotes the wage at workplace location
j, and εij,r (ν) is a Fréchet distributed idiosyncratic preference shock, specific to each location’s origin, destination,
and route choice, with shape parameter θ > 0.62 The shape parameter governs commuter heterogeneity; as θ
grows large, commuters become less differentiated and make more similar choices given the same values of ui
and wj . Individuals choose where to live, work, and which route to take to work to maximize Vij,r (ν).

Locations in the city are arranged on multiple transport networks, and workers use these networks for com-
muting between different locations. Let m = 1, ...,M index the different transport networks available for com-
muting in the city, and let tkl(m) ≥ 1 measure the disutility of moving directly from location k to location l using
network m. In our application, we assume that Greater Jakarta has three transport networks: (1) BRT; (2) trains;
and (3) surface (used by motorcycles, cars, and traditional public buses), so that M = 3, but we present results
for the general case of M transport networks.63 As we will see, tkl(m) will be determined in equilibrium and will
depend on the route and location choices of all workers in the model. We can collect these equilibrium iceberg
transportation costs in a series of (N ×N) transportation matrices, defined as follows:

T1 = [tkl(1)] T2 = [tkl(2)] ... TM = [tkl(M)]

If no direct link exists for network m, we set tkl(m) = ∞ for all k and m, and to exclude self loops, we also set
tkk(m) =∞ for all m.

A route from i to j represents a sequence of edges along different networks that link origin i to destination j.
For example, a commuter from i to j may take the following route r on their morning commute:

i
surface−→ k

BRT−→ l
BRT−→ n

surface−→ j

In this example, the length of route r, denoted by Kr, is equal to 4. Transport costs are multiplicative, so the total
cost along this path is given by:

TC(r) = tik (surface)× tkl (BRT)× tln (BRT)× tnj (surface)

62The CDF of εij,r (ν) is given by:

F (εij,r) = Pr {ε ≤ εij,r} = exp
{
−ε−θij,r

}
63This approach ignores different mode choices within the surface network, and it also assumes that traffic congestion depends

on the total volume of commuters on the surface network, and not on the mix of vehicles.
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For a more general route r of length Kr, the total cost from commuting is given by:

TC(r) =

Kr∏
l=1

trl−1,rl

(
mrl−1,rl

)
where mrl−1,rl indexes the network chosen on link l of route r. Let Rij denote the (countably infinite) set of all of
possible routes from i to j.

E.2 Commuter Flows and Welfare

From properties of the Fréchet distribution, we can show that the probability that a worker choses to live in i, work
in j and commute by r ∈ Rij is given by:

πij,r =
uθiw

θ
j

(∏Kr
l=1 trl−1,rl

(
mrl−1,rl

)−θ)
∑N
i=1

∑N
j=1

∑
r′∈Rij u

θ
iw

θ
j

(∏Kr′
l=1 tr′l−1,r

′
l

(
mr′l−1,r

′
l

)−θ) (E.2)

By summing (E.2) across all routes, we can show that the total number of workers who live in i and work in j is
given by:

Lij = uθiw
θ
j τ
−θ
ij LW

−θ
(E.3)

In this equation, τij measures the (endogenous) transportation costs from i to j, given by:

τij ≡

 ∑
r∈Rij

(
Kr∏
l=1

trl−1,rl

(
mrl−1,rl

)−θ)− 1
θ

(E.4)

This a sum of the total costs of commuting across all routes from i to j, where those costs are determined in
equilibrium by each of the least cost routing choices made by different workers in the city. In (E.3), W is also the
expected welfare of a resident in the city, given by:

W = E
[
max
i,j,r

Vij,r (ν)

]
=

 N∑
i=1

N∑
j=1

τ−θij u
θ
iw

θ
j

 1
θ

(E.5)

Note that equation (E.3) shows that the model admits a gravity model formulation of bilateral commuting flows,
as in McDonald and McMillen (2010) and Ahlfeldt et al. (2015).64

E.3 Wages, Productivity, and Residential Amenities

We assume that each location j produces a homogenous product that can be costlessly traded between locations
in the city. Labor is the only input into production, and production takes place under perfect competition and
constant returns to scale at the level of the firm. We also assume that the productivity of location i is given by:

Ai = Ai
(
LFi
)α

(E.6)

Here,Ai measures location fundamentals that contribute to productivity in i, and LFi measures the total number of
workers who work in location i, so that α measures the strength of (net) local agglomeration externalities. Because
of perfect competition, workers are paid their marginal product, and in equilibrium, wi = Ai.

64See Appendix E.11.1 for a derivation of (E.3).
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Similarly, we also assume that residential amenities are affected by the size of the residential population, as
follows:

ui = ui
(
LRi
)β

(E.7)

where LRi measures the total number of residents in location i, ui measures exogenous amenities in location i, and
β measures the size of (net) residential externalities. Note that α and β could both be negative because there is no
direct land consumption in the model.

E.4 Characterizing Equilibrium

To characterize the model’s equilibrium, we need a few tools. First, we derive a matrix representation for the
equilibrium transport costs from i to j, which will be convenient to work with analytically. Next, we explain how
the model’s market clearing conditions can be used to express the gravity commuting flow equations, (E.3), in
market access terms. Then, we develop an expression for how frequently links are used in equilibrium, and we
use that to characterize traffic patterns.

Matrix Representation of Transportation Costs. In Appendix Section E.11.2, we prove that we can express
transport costs from i to j, τij , as follows:

τ−θij =

∞∑
K=0

AKij (E.8)

where A = [Aij ] is an (N ×N) sum of weighted adjacency matrices, given by:

A =

[
M∑
m=1

tij(m)−θ

]
(E.9)

The (i, j)th element of A is equal to the sum across networks of the transport cost of moving from i to j along
network m, raised to the power −θ if a direct link exists. Otherwise, entries are equal to zeros. The proof of (E.8)
uses induction, following Fan et al. (2021) who focus on the case of two networks.

As long as the spectral radius of A is less than 1, we can write this geometric sum as follows:

∞∑
k=0

AK = (I−A)
−1 ≡ B

where B = [bij ] is the Leontief inverse of the sum of the weighted adjacency matrices. This allows us to express τij
in a parsimonious form: τ−θij = bij . Allen and Arkolakis (2020) note that the spectral radius of A will be less than
1 if τjt−θij < 1 for all i. This condition will be satisfied when either of the following conditions hold: (1) if transport
costs between locations are sufficiently large; or (2) if θ is sufficiently large; or (3) if the adjacency matrix has many
infinite elements (so that most locations are only indirectly connected).

Market Access. Next, we impose two market clearing conditions to express the gravity commuting flows
equation, (E.3), in market access terms. We first require that the total number of residents in location i, LRi , is
equal to the number of commuters who flow from i. We also require that the number of commuters who work in
location j, LFj , is equal to the sum of commuters from all other locations to location j:

LRi =

N∑
j=1

Lij LFj =

N∑
i=1

Lij (E.10)
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Using (E.10), we can write (E.3) as follows:

Lij = τ−θij

[
LRi
Π−θi

][
LFj

P−θj

]
(E.11)

where Πi measures the inverse of commuting market access that residents in i have to firms in all other locations

Πi =

 N∑
j=1

τ−θij L
F
j P

θ
j

− 1
θ

= ui
[
LRi
]− 1

θ

[
L

W
θ

] 1
2θ

(E.12)

and Pj measures the inverse of market access that firms in j have to workers in all other locations

Pj =

(
N∑
i=1

τ−θij L
R
j Πθ

i

)− 1
θ

= wj
[
LFj
]− 1

θ

[
L

W
θ

] 1
2θ

(E.13)

Link Intensity and Traffic Flows. We can define the link intensity for a link (k, l) on route (i, j) as the expected
number of times that link (k, l) is used in commuting between i and j:

πklij =
∑
r∈Rij

[
πij,r∑

r′∈Rij πij,r′

]
nklr (E.14)

In this expression, the term in brackets is the probability that route r is chosen among all routes linking i to j and
nklr is the number of times the link (k, l) is used along route r (allowing for the possibility that routes double back).

In Appendix Section E.11.3, we discuss how results in Allen and Arkolakis (2020) can be used to show that
πklij can be written as:

πklij =

M∑
m=1

(
τij

τiktkl(m)τlj

)θ
=

M∑
m=1

πklij (m) (E.15)

where πklij (m) = (τij/τiktkl(m)τlj)
θ measures the intensity of using network m for link (k, l) on routes from i to

j. Equation (E.15) states that the total link intensity for (k, l) along routes from i to j can be written as the sum of
network-specific link intensities. The more out of the way the transportation link (k, l) is from the optimal path
between i and j, the greater the denominator (which measures optimally going from i to k, going k to l using route
m, and going optimally from l to j), and the less the link will be used.

The total traffic over link (k, l) across network m is defined as:

Ξkl(m) ≡
N∑
i=1

N∑
j=1

∑
r∈Rij

πij,rn
k,l
r L (E.16)

This is simply equal to the number of commuters who use link (k, l) along a route from i to j, summed up over
all bilateral origin and destination pairs and routes connecting them. Using the link intensity expression (E.15)
and substituting in the market access version of the gravity relationship between commuting flows, (E.11), we can
show that the total traffic over link (k, l) across all networks can be written as:

Ξkl =

M∑
m=1

tkl(m)−θP−θk Π−θl =

M∑
m=1

Ξkl(m) (E.17)

Here, Ξkl follows a gravity equation, and traffic flows are determined by economic conditions at the beginning and

56



the end of the link, as reflected in the market access terms.65 As commuter market access for location l and firm
market access to location k increase, traffic also increases. Equation (E.17) also shows that the total traffic along
link (k, l) can be written as the sum of traffic on (k, l) across networks, where network-specific traffic is given by
Ξkl(m) = tkl(m)−θP−θk Π−θl .

Traffic Congestion. For simplicity, we assume that all networks are congestible. Congestion for public transit
modes, for example BRT buses or trains, might occur as the number of riders increases. We also assume that the
direct cost of traversing a particular link using network m depends on the total traffic flowing through that link
using network m, as follows:

tkl(m) = tkl(m) [Ξkl(m)]
λ (E.18)

where tkl(m) measures the exogenous component of transport costs for network m, and λ > 0 measures the
strength of traffic congestion. By substituting in the mode-specific traffic expression from (E.17), we obtain:

tkl(m) =

[
tkl(m)

] 1
1+θλ

[
Pk

] −θλ
1+θλ

[
Πl

] −θλ
1+θλ

(E.19)

This equation explains how the distribution of economic activity affects equilibrium transport costs through traffic
congestion. In equilibrium, the cost of traversing link (k, l) grows larger as commuter market access for location l
and firm market access to location k increase. The parameter λ affects the strength of these market access forces.

Plugging (E.19) expression back into the network-specific traffic expression from (E.17), we obtain:

Ξkl(m) =

[
tkl(m)

] −θ
1+θλ

[
Pk

] −θ
1+θλ

[
Πl

] −θ
1+θλ

(E.20)

This equation relates the distribution of economic activity to equilibrium traffic flows.

Parameterizing Transport Costs. We assume that for networks m = 1, 2, 3, we have:

tkl(m) =

[
distancekl(m)× speed−1

kl (m)

]δ0[
Γ(m)

]γm
, (E.21)

where δ0 is the time elasticity of transport costs, and Γ(m) ≡ exp {1m} is a network-specific indicator, raised to the
power γm. We set δ0 = 1/θ to imply a distance elasticity for commuting flows of negative one, following Allen
and Arkolakis (2020) and a large gravity literature (Disdier and Head, 2008; Chaney, 2018).

We also set γ3 = 0 for the surface network (m = 3), so that Γ(m)γm measures the disutility of commuting via
network m relative to the surface network, holding travel times constant. If BRT or train networks create greater
disutility from travel than surface based modes, perhaps because of waiting times or lower comfort, we would
expect that γ1 > 0 and γ2 > 0.66

We also assume that speed−1
kl (m) is given by:

speed−1
kl (m) =

[
m0 ×

[
Ξkl(m)

laneskl(m)

]δ1
× εkl(m)

]
, (E.22)

where laneskl(m) measures the number of lanes for networkm from k to l. Combining (E.21) and (E.22), we obtain

65See Appendix Section E.11.4 for more details.
66In January 2014, a UN-sponsored survey of TransJakarta BRT riders found that nearly 30 percent of riders considered the BRT

buses to either be “uncomfortable” or “very uncomfortable” (Sayeg and Lubis, 2014), and such findings were corroborated in
a recent survey of females in DKI Jakarta (Witoelar et al., 2017).
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equation (E.18) with

tkl(m) =

[
distancekl(m)×m0 × laneskl(m)−δ1 × εkl(m)

] 1
θ
[
Γ(m)

]γm
and λ = δ1/θ.

E.5 Equilibrium

Given location fundamentals,
{
Ai, ui

}
for i = 1, ..., N , the aggregate labor endowment, L, and the exogenous

components of transport costs for all networks: Tm =
[
tkl(m)

]
for m = 1, ...,M , an equilibrium is a distribution of

economic activity,
{
lFi , l

R
i

}
and inverse aggregate welfare, χ, such that:

1. The equilibrium distribution of economic activity ensures that commuting markets clear (i.e. equations
(E.10) hold).

2. Given equilibrium transport costs, Tm form = 1, ..,M , agents optimally choose routes through the network:

τij = b
−1/θ
ij where B = [bij ] = (I−A)

−1 and A =

[
M∑
m=1

tij(m)−θ

]

3. Given the equilibrium distribution of economic activity, the exogenous components of transport costs for all
networks, and agents optimal route choices, equilibrium transport costs are determined by traffic conges-
tion, i.e. Tm = [tkl(m)] where tkl(m) is given by equation (E.19).

A strictly positive equilibrium is one where lFi > 0 and lRi > 0 for all i = 1, ..., N . In Appendix Section E.11.6, we
show that in equilibrium, the following system of equations will hold:

[
lRi

]1−βθ[
lFi

] (1−θα)θλ
1+θλ

= χ
(
Ai
)θ

(ui)
θ (
lFi
) θ(α+λ)

1+θλ

+ χ
θλ

1+θλ

N∑
j=1

{[
Ai

] θ2λ
1+θλ

[
ui

]θ[
uj

] −θ
1+θλ

[
L

] −λθ
1+θλ

[
lRj

] 1−βθ
1+θλ

[
M∑
m=1

[
tij(m)

] −θ
1+θλ

]} (E.23)

[
lRi

] θλ(1−βθ)
1+θλ

[
lFi

](1−θα)

= χ
(
Ai
)θ

(ui)
θ (
lRi
) θ(β+λ)

1+θλ

+ χ
θλ

1+θλ

N∑
j=1

{[
Ai

]θ[
Aj

] −θ
1+θλ

[
ui

] θ2λ
1+θλ

[
L

] −λθ
1+θλ

[
lFj

] 1−αθ
1+θλ

[
M∑
m=1

[
tji(m)

] −θ
1+θλ

]} (E.24)

These equations determine the equilibrium distribution of economic activity as a function of the model’s param-
eters, {α, β, θ, λ}, location fundamentals, and the transportation networks, after accounting for optimal routing
choices and the resulting traffic patterns and congestion they imply. They are identical to the equilibrium expres-
sions for the quantitative urban model in Allen and Arkolakis (2020) (specifically, equations 30 and 31), except that
the transport costs term reflects the sum of costs across all networks, instead of a single network’s transport cost.

By Proposition 1 of Allen and Arkolakis (2020), if location fundamentals are positive (i.e. Ai > 0 and ui > 0

for all i), if the city’s aggregate labor endowment is positive (L > 0), and if the infrastructure matrix is such that
there is a path with finite costs between any two locations, then an equilibrium will exist, and it will be unique if:

α ≤ 1

2

(
1

θ
− λ
)

β ≤ 1

2

(
1

θ
− λ

)
(E.25)
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These conditions state that productivity and amenities must be weakly net dispersive in order to ensure unique-
ness, where the size of that dispersion is regulated by θ and λ.

E.6 Counterfactuals

To determine how the distribution of economic activity and welfare would change under different configurations
of the transportation network, we follow the “exact hat algebra” approach (Dekle et al., 2008). Let ·̂ denote an
operator that indicates the counterfactual change in a variable, so that for example, l̂Ri = lR

′

i /l
R
i , where lRi mea-

sures the actual residential population share, and lR
′

i measures the counterfactual residential population share. In
Appendix E.11.7, we show how to express the system of equilibrium equations, (E.23) and (E.24), in changes form,
as follows:

[
l̂i
F
] θλ(1−θα)

1+θλ
[
l̂i
R
]1−θβ

= χ̂

[
LFi

LFi +
∑N
j=1 Ξij

] [
l̂i
F
] θ(α+λ)

1+θλ

+ χ̂
θλ

1+θλ

N∑
j=1

(
Ξij

LFi +
∑N
j=1 Ξij

)(
t̂ij

[
l̂j
R
] 1−θβ

1+θλ

)
(E.26)

[
l̂i
F
]1−θα [

l̂i
R
] θλ(1−θβ)

1+θλ

= χ̂

[
LRi

LRi +
∑N
j=1 Ξji

] [
l̂i
R
] θ(β+λ)

1+θλ

+ χ̂
θλ

1+θλ

N∑
j=1

(
Ξji

LRi +
∑N
j=1 Ξji

)(
t̂ji

[
l̂j
F
] 1−θα

1+θλ

)
(E.27)

where t̂ij is defined as follows:

t̂ij ≡

∑M
m=1

[
t
′
ij(m)

] −θ
1+θλ∑M

m=1

[
tij(m)

] −θ
1+θλ

 (E.28)

Note that (E.26) and (E.27) are nearly identical to equations (38) and (39) in Allen and Arkolakis (2020), except for
the terms t̂ij . These terms account for improvements to potentially multiple transport networks, while Allen and
Arkolakis (2020) only consider a single network in their analysis.

E.7 Estimating λ

Our reduced form estimates of the travel time spillovers from the BRT from Table 7 identify what happens when
the BRT takes away a lane of traffic from traditional surface based modes. That is, our reduced form regressions
estimate the following parameter:

β̂RF =
−∂ ln (travel timekl)

∂ laneskl(m)
=
−∂ ln

(
speed−1

kl (m)
)

∂ laneskl(m)

where we use a negative sign to indicate that the BRT took away lanes of traffic (as opposed to adding them), and
where we express the change in terms of the inverse of speed (because distance is held constant). Taking logs of
(E.22), we can write δ1 as:

−δ1 =
∂ ln speed−1

kl (m)

∂ ln laneskl(m)

We convert the semi-elasticity, δ1, into the reduced form elasticity, β̂RF , as follows:

−δ1 =
∂ ln speed−1

kl (m)

∂ ln laneskl(m)

−δ1 =
∂ ln speed−1

kl (m)

∂ laneskl(m)/laneskl(m)
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−δ1 =
∂ ln speed−1

kl (m)

∂ laneskl(m)
laneskl(m)

−δ1 = −β̂RF × laneskl(m)

=⇒ δ1 = β̂RF × laneskl(m)

Evaluating δ1 = β̂RF × laneskl(m) at a mean laneskl(m) of 3 (as discussed in Section 2 and presented in Appendix
Figure A.1), and recalling that δ1 = θλ, our estimate of λ is given by:

λ =
3β̂RF
θ

Our baseline estimate of λ = 0.055 implies that a 10 percent increase in traffic increases transport costs by 0.5 per-
cent.67 This estimate is comparable to the value of λ = 0.071 used by Allen and Arkolakis (2020). This parameter
will vary depending on the value of θ we work with, as presented in Appendix Table A.22.

E.8 Estimating γ1 and γ2

In this subsection, we describe how to derive equation (15) in the paper, which enables us to obtain estimates of γ1

and γ2. Note that we can express the probability that network m is chosen on the link (k, l) through the route from
i to j as a ratio of network-specific link intensities, from (E.15):

pklij (m) =
πklij (m)∑M
s=1 π

kl
ij (s)

=

(
τij

τiktkl(m)τlj

)θ
∑M
s=1

(
τij

τiktkl(s)τlj

)θ
=

tkl(m)−θ∑M
s=1 tkl(s)

−θ

Substituting in (E.21), we obtain:

pklij (m) =

[[
distancekl(m)× speed−1

kl (m)

] 1
θ
[
Γ(m)

]γm]−θ
∑M
s=1

[[
distancekl(m)× speed−1

kl (s)

] 1
θ
[
Γ(s)

]γs]−θ

=

travel timekl(m)−1

[
Γ(m)

]−γmθ
∑M
s=1 travel timekl(s)−1

[
Γ(s)

]−γsθ
Defining yij(m) ≡ ln

(
pklij (m)

)
− ln

(
pklij (surface)

)
and plugging in (13), we obtain:

yij(m) ≡ ln
(
pklij (m)

)
− ln

(
pklij (surface)

)
= − ln(travel timekl(m))− γmθ ln (Γ(m)) + ln(travel timekl(surface)) + γ3θ ln (Γ(surface))

= γ3θ ln (Γ(surface))− γmθ ln (Γ(m)) +
{

ln (travel timekl(surface))− ln (travel timekl(m))
}

67Note that if traffic and lanes are positively correlated, and if our controls in Table 7 do not fully capture traffic variation,
estimates from this procedure should underestimate the congestion elasticity.
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For estimation, we proxy yij(m) using the log of the share of people commuting from i to j who use m as their
primary transport network, minus the log of the share of people commuting from i to j who take surface based
modes. Instead of measuring travel time differences directly between k and l, we use average speeds by mode
from i to j (multiplied by the appropriate distances). We also condition on origin-by-destination fixed effects, so
the variation in travel times is due to speeds. Further, recall that Γ(m) = exp {1m}, and that we normalized γ3 = 0.
So, our regression is the following:

ln (pij(m))− ln (pij(surface)) = γ̃m ln (Γ(m)) + δ [ln (travel timeij(surface))− ln (travel timeij(m))] + θij + εijm

where γ̃m ≡ −θγm, the term θij denotes origin-by-destination fixed effects, and εijm is an error reflecting measure-
ment error. On the right hand side, ln (Γ(m)) ≡ 1m, so we simply regress the inverted share on network indicators,
network travel time differences, and origin-and-destination fixed effects. This is equation (15) as stated in the main
text.

E.9 Approximating Traffic

Note that to calculate Ξ̃kl(m) from equation (16) in the paper, we can form the following matrices:

T̃(m) ≡
[
t̃kl(m)−θ

]
Lb ≡

[
Lij(m)/b̃ij

]
Then, we can calculate the matrix of traffic flows for network m, Ξ̃(m) ≡

[
Ξ̃kl(m)

]
as follows:

Ξ̃(m) = T̃(m)�
[
B̃ · Lb · B̃

]
where� indicates the Hadamard (or element-wise) product, and · indicates the usual matrix product. This formula
can be verified by simple (but tedious) matrix multiplication. For example, in the (3 × 3) case, and dropping the
network-specific m subscripts, we have:

T̃�
[
B̃ · Lb · B̃

]
= T̃�

 b̃11 b̃12 b̃13

b̃21 b̃22 b̃23

b̃31 b̃32 b̃33




L11

b̃11

L12

b̃12

L13

b̃13
L21

b̃21

L22

b̃22

L23

b̃23
L31

b̃31

L32

b̃32

L33

b̃33


 b̃11 b̃12 b̃13

b̃21 b̃22 b̃23

b̃31 b̃32 b̃33



= T̃�


∑3
i=1 b̃1i

(
Li1/b̃i1

) ∑3
i=1 b̃1i

(
Li2/b̃i2

) ∑3
i=1 b̃1i

(
Li3/b̃i3

)
∑3
i=1 b̃2i

(
Li1/b̃i1

) ∑3
i=1 b̃2i

(
Li2/b̃i2

) ∑3
i=1 b̃2i

(
Li3/b̃i3

)
∑3
i=1 b̃3i

(
Li1/b̃i1

) ∑3
i=1 b̃3i

(
Li2/b̃i2

) ∑3
i=1 b̃3i

(
Li3/b̃i3

)

 b̃11 b̃12 b̃13

b̃21 b̃22 b̃23

b̃31 b̃32 b̃33



= T̃�


∑
i

∑
j b̃1i

(
Lij/b̃ij

)
b̃j1

∑
i

∑
j b̃1i

(
Lij/b̃ij

)
b̃j2

∑
i

∑
j b̃1i

(
Lij/b̃ij

)
b̃j3∑

i

∑
j b̃2i

(
Lij/b̃ij

)
b̃j1

∑
i

∑
j b̃2i

(
Lij/b̃ij

)
b̃j2

∑
i

∑
j b̃2i

(
Lij/b̃ij

)
b̃j3∑

i

∑
j b̃3i

(
Lij/b̃ij

)
b̃j1

∑
i

∑
j b̃3i

(
Lij/b̃ij

)
b̃j2

∑
i

∑
j b̃3i

(
Lij/b̃ij

)
b̃j3



=


∑
i

∑
j b̃1it

−θ
11

(
Lij/b̃ij

)
b̃j1

∑
i

∑
j b̃1it

−θ
12

(
Lij/b̃ij

)
b̃j2

∑
i

∑
j b̃1it

−θ
13

(
Lij/b̃ij

)
b̃j3∑

i

∑
j b̃2it

−θ
21

(
Lij/b̃ij

)
b̃j1

∑
i

∑
j b̃2it

−θ
22

(
Lij/b̃ij

)
b̃j2

∑
i

∑
j b̃2it

−θ
23

(
Lij/b̃ij

)
b̃j3∑

i

∑
j b̃3it

−θ
31

(
Lij/b̃ij

)
b̃j1

∑
i

∑
j b̃3it

−θ
32

(
Lij/b̃ij

)
b̃j2

∑
i

∑
j b̃3it

−θ
33

(
Lij/b̃ij

)
b̃j3


Close inspection reveals that each element of the resulting matrix is equivalent to the expression from Ξ̃kl(m) from
equation (16) in the paper.
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E.10 Calculating Changes in Delay

To calculate changes in delay for network m from k to l, we first express network-specific traffic from k to l in the
changes form, using (E.20):

Ξ̂kl(m) = t̂kl(m)
−θ

1+θλ P̂
−θ

1+θλ

k Π̂
−θ

1+θλ

l

Plugging in the result from equation (E.45) derived above, we can write:

Ξ̂kl(m) = t̂kl(m)
−θ

1+θλ

[
l̂k
F
] 1−θα

1+θλ
[
l̂l
R
] 1−θβ

1+θλ
[
Ŵ
] θ

1+θλ

(E.29)

This expression can be calculated after solving the exact hat system of equations, (E.26) and (E.27), for changes
in residential populations, workplace populations, and welfare. To convert the expression above into changes in
speed, we simply substitute (E.29) into an expression for changes in inverse speeds, which can be easily derived
from equation (E.22):

̂speed−1
kl (m) =

[
Ξ̂kl(m)

l̂aneskl(m)

]δ1

E.11 Model Derivations

These model derivations closely follow arguments presented by Allen and Arkolakis (2020), extending results for
a single network to the multiple network case presented above.

E.11.1 Bilateral Commuting Flows

To show (E.3), we sum commuting probabilities across all routes and multiply by the aggregate population:

Lij =
∑
r∈Rij

Lij,r =
∑
r∈Rij

πij,rL

=
uθiw

θ
jL
[∑

r∈Rij
∏Kr
l=1 trl−1,rl

(
mrl−1,rl

)−θ]
∑N
i=1

∑N
j=1

[∑
r∈Rij

∏Kr
l=1 trl−1,rl

(
mrl−1,rl

)−θ]
uθiw

θ
j

=
Luθiw

θ
j τ
−θ
ij∑N

i=1

∑N
j=1 τ

−θ
ij u

θ
iw

θ
j

= Luθiw
θ
j τ
−θ
ij W

−θ

where W is defined in equation (E.5).

E.11.2 Induction Proof for the Matrix Representation of Transport Costs

We want to show that we can write

τ−θij =

 ∑
r∈Rij

[
Kr∏
l=1

t−∞rl−1,rl

]
=

∞∑
K=0

 ∞∑
K1=1

∞∑
K2=1

. . .

∞∑
KK−1=1

ai,k1 · ak1,k2 · . . . · akK−2,kK−1
· akK−1,j


=

∞∑
K=0

AKij
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where A is an (N ×N) matrix, given by:

A =

[
M∑
m=1

tij(m)−θ

]
To do so, note that we have:

τ−θij =
∑
r∈Rij

(
Kr∏
l=1

trl−1,rl

(
mrl−1,rl

)−θ)

Also, define the mode-specific A matrices:

A1 =
[
tij(1)−θ

]
A2 =

[
tij(2)−θ

]
. . . AM =

[
tij(M)−θ

]
Proof. We proceed by induction. Consider the transport cost of moving from o to d along routes with only one
network segment. To write this, let Rij(K = 1) denote the set of all routes of length 1 between i and j. Explicitly
enumerating all possible routes, we have:

τ−θod,1 =
∑

r∈Rij(K=1)

(
K=1∏
l=1

ti,j (mi,j)
−θ

)

= τod,1(1)−θ + τod,1(2)−θ + ...+ τod,1(M)−θ

=

M∑
m=1

τod,1(m)−θ

= Aod

Now, suppose that we can write:
τ−θod,k =

[
Ak
]
od

That is, suppose the cost of travelling from o to d in k steps is given by the (o, d) element of the matrix A raised to
the power k. To find τ−θod,k+1, we simply add a trip of length 1 on each separate mode:

τ−θod,k+1 =
[
AkA1

]
od

+
[
AkA2

]
od

+ . . .+
[
AkA1

]
od

=
[
Ak (A1 + A2 + . . .+ AM )

]
od

=
[
AkA

]
od

=
[
Ak+1

]
od

Therefore, by induction, we can write:

τ−θod =

∞∑
K=0

AKij

where Aij is the (i, j) the element of A, and

A = (A1 + A2 + . . .+ AM ) =

[
M∑
m=1

tij(m)−θ

]
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E.11.3 Link Intensity

In Appendix A.2, Allen and Arkolakis (2020) use a matrix calculus argument to show that the link intensity, πklij ,
can be written as:

πklij =
bikaklblj

τ−θij

However, we work with a different definition of A, so our expression is slightly different from their paper. Given
our definition of A from (E.9), we can write this as:

πklij =
bikaklblj

τ−θij

=
bik

[∑M
m=1 tkl(m)−θ

]
blj

τ−θij

=

M∑
m=1

biktkl(m)−θblj

τ−θij

=

M∑
m=1

τ−θik tkl(m)−θτ−θlj

τ−θij

=

M∑
m=1

(
τij

τiktkl(m)τlj

)θ

=

M∑
m=1

πklij (m)

So, the total link intensity for link (k, l) along routes from i to j can be written as the sum of mode-specific link
intensities for link (k, l) along routes from i to j. The more out of the way the transportation link (k, l) is from the
optimal path between i and j, the greater the denominator (which measures optimally taking routes from i to k,
then using route m to get from k to l, and finally taking an optimal route from l to j). As the denominator grows,
πklij declines, and usage of the link along routes from i to j decreases.

E.11.4 Traffic

Let Ξkl denote the total traffic over link (k, l), across all routes. We can write:

Ξkl ≡
N∑
i=1

N∑
j=1

πij,r
∑
r∈Rij

nk,lr L

=

N∑
i=1

N∑
j=1

πklijLij

=

N∑
i=1

N∑
j=1

(
bikaklblj

τ−θij

)
Lij

Substituting for Lij using the market access version of the gravity relationship between commuting flows, from
equation (E.11), we have:

Ξkl =

N∑
i=1

N∑
j=1

(
bikaklblj

τ−θij

)(
τ−θij

[
LRi
Π−θi

][
LFj

Π−θj

])
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=

N∑
i=1

N∑
j=1

(
τ−θik aklτ

−θ
lj

τ−θij

)(
τ−θij

[
LRi
Π−θi

][
LFj

P−θj

])

= akl

(
N∑
i=1

τ−θik

[
LRi
Π−θi

])
︸ ︷︷ ︸

P−θk

 N∑
j=1

τ−θlj

[
LFj

P−θj

]
︸ ︷︷ ︸

Π−θl

= aklP
−θ
k Π−θl

=

[
M∑
m=1

tkl(m)−θ

]
P−θk Π−θl

=

M∑
m=1

tkl(m)−θP−θk Π−θl

=

M∑
m=1

Ξkl(m)

So, we can write the total traffic along link (k, l) as the sum of traffic on link (k, l) across different modes, where
mode-specific traffic, Ξkl(m), is given by:

Ξkl(m) = tkl(m)−θP−θk Π−θl

E.11.5 Traffic Congestion

We assume that tkl(m) is given by equation (E.18):

tkl(m) = tkl(m) [Ξkl(m)]
λ

Using this relationship, we can write:

tkl(m) = tkl(m) [Ξkl(m)]
λ

tkl(m) = tkl(m)
[
tkl(m)−θP−θk Π−θl

]λ
=⇒ tkl(m)1+θλ = tkl(m)P−θλk Π−θλl

So, we have:

tkl(m) =

[
tkl(m)

] 1
1+θλ

[
Pk

] −θλ
1+θλ

[
Πl

] −θλ
1+θλ

Plugging this expression into the mode-specific traffic formula in equation (E.17), we obtain:

Ξkl(m) =

[
tkl(m)

] −θ
1+θλ

[
Pk

] −θ
1+θλ

[
Πl

] −θ
1+θλ

E.11.6 Equilibrium

To derive the model’s equilibrium conditions, we first rewrite workplace and residential populations as shares
and express them in terms of transport costs, amenities, and wages. We then use the matrix product expressions
for transport costs to derive the equilibrium expressions, equations (E.23) and (E.24).

Rewriting Workplace and Residential Populations as Shares After combining equations (E.6) and (E.7)
with the gravity commuting equation (E.11), we can use the market clearing conditions (E.10) to obtain the follow-
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ing:

(
lRi
)1−βθ

= χ

N∑
j=1

τ−θij
(
uiAj

)θ (
lFj
)αθ

(
lFi
)1−αθ

= χ

N∑
j=1

τ−θji
(
ujAi

)θ (
lRj
)βθ (E.30)

where χ = L
(α+β)θ

/W
θ

measures the inverse of aggregate welfare in the system. Given transportation costs
{τij}, productivities

{
Ai
}

, and amenities, {ui}, we can solve the equations in (E.30) to determine the equilibrium
distribution of where people live and where they work.

To show (E.30), we substitute the productivity and amenity equations, (E.6) and (E.7), into the gravity com-
muting equation, (E.3):

LRi =

N∑
j=1

Lij =

N∑
j=1

uθiw
θ
j τ
−θ
ij LW

−θ

=

[
L

W
θ

] N∑
j=1

τ−θij

[
ui
(
LRi
)β]θ [

Aj
(
LFj
)α]θ

=

[
L

W
θ

] N∑
j=1

τ−θij u
θ
i

(
LRi
)βθ

A
θ

j

(
LFj
)αθ

=⇒
(
LRi
)1−βθ

=

[
L

W
θ

] N∑
j=1

τ−θij
(
uiAj

)θ (
LFj
)αθ

Now, setting lRi = LRi /L and lFi = LFi /L, we can write:

(
LlRi

)1−βθ
=

[
L

W
θ

] N∑
j=1

τ−θij
(
uiAj

)θ (
LlFj

)αθ
(
lRi
)1−βθ

=

[
L

(α+β)θ

W
θ

]
N∑
j=1

τ−θij
(
uiAj

)θ (
lFj
)αθ

which is the first equation of (E.30) where we set χ = L
(α+β)θ

/W
θ
. The second equation follows similarly.

Deriving the Equilibrium Equations We proceed by writing the equilibrium conditions characterizing the
distribution of economic activity as functions of endogeneous transport costs using a matrix product.

(
lRi
)1−βθ

= χ

N∑
j=1

τ−θij
(
uiAj

)θ (
lFj
)αθ

=⇒ (ui)
−θ (

lRi
)1−βθ

= χ

N∑
j=1

τ−θij
(
Aj
)θ (

lFj
)αθ
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This relationship holds for all locations i = 1, ..., N , so we can write:
(u1)

−θ (
lR1
)1−βθ

(u2)
−θ (

lR2
)1−βθ

...
(uN )

−θ (
lRN
)1−βθ

 =


χ
∑N
j=1 τ

−θ
1j

(
Aj
)θ (

lFj
)αθ

χ
∑N
j=1 τ

−θ
2j

(
Aj
)θ (

lFj
)αθ

...

χ
∑N
j=1 τ

−θ
Nj

(
Aj
)θ (

lFj
)αθ




(u1)
−θ (

lR1
)1−βθ

(u2)
−θ (

lR2
)1−βθ

...
(uN )

−θ (
lRN
)1−βθ

 = χ


τ−θ11 τ−θ12 . . . τ−θ1N

τ−θ21 τ−θ22 . . . τ−θ2N
...

...
. . .

...
τ−θN1 τ−θN2 . . . τ−θNN



(
Aj
)θ (

lFj
)αθ(

Aj
)θ (

lFj
)αθ

...(
Aj
)θ (

lFj
)αθ


So, we can write this as:

[uLR] = χB [aLF ]

[uLR] = χ (I−A)
−1

[aLF ]

(I−A) [uLR] = χ [aLF ]

[uLR]−A [uLR] = χ [aLF ]
(u1)

−θ (
lR1
)1−βθ

(u2)
−θ (

lR2
)1−βθ

...
(uN )

−θ (
lRN
)1−βθ

−


a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

. . .
...

aN1 aN2 . . . aNN




(u1)
−θ (

lR1
)1−βθ

(u2)
−θ (

lR2
)1−βθ

...
(uN )

−θ (
lRN
)1−βθ

 = χ


(
Aj
)θ (

lFj
)αθ(

Aj
)θ (

lFj
)αθ

...(
Aj
)θ (

lFj
)αθ


So, we can write:

(ui)
−θ (

lRi
)1−βθ − N∑

j=1

aij (uj)
−θ (

lRj
)1−βθ

= χ
(
Ai
)θ (

lFi
)αθ

=⇒ (ui)
−θ (

lRi
)1−βθ

= χ
(
Ai
)θ (

lFi
)αθ

+

N∑
j=1

aij (uj)
−θ (

lRj
)1−βθ

(E.31)

Similarly, we can show that:

(
lFi
)1−αθ

= χ

N∑
j=1

τ−θji
(
ujAi

)θ (
lRj
)βθ

(
Ai
)θ (

lFi
)1−αθ

= χ

N∑
j=1

τ−θji (uj)
θ (
lRj
)βθ

=⇒ [aLF ] = χBT [uLR]

[aLF ] = χ
(
I−AT

)−1
[uLR](

I−AT
)

[aLF ] = χ [uLR]

[aLF ] = χ [uLR] + AT [aLF ]
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=⇒


(
A1

)θ (
lF1
)1−αθ(

A2

)θ (
lF2
)1−αθ

...(
AN
)θ (

lFN
)1−αθ

 = χ


(u1)

θ (
lR1
)βθ

(u2)
θ (
lR2
)βθ

...
(uN )

θ (
lRN
)βθ

+


a11 a21 . . . aN1

a12 a22 . . . aN2

...
...

. . .
...

a1N a2N . . . aNN



(
A1

)θ (
lF1
)1−αθ(

A2

)θ (
lF2
)1−αθ

...(
AN
)θ (

lFN
)1−αθ


So, we can write: (

Ai
)θ (

lFi
)1−αθ

= χ (ui)
−θ (

lRi
)βθ

+

N∑
j=1

aji
(
Aj
)θ (

lFj
)1−αθ

(E.32)

Now, note that A = [aij ] with aij =
∑M
m=1 tij(m)−θ. Plugging in the expression for equilibrium travel costs,

(E.19), we can write:

aij =

M∑
m=1

tij(m)−θ

=

M∑
m=1

[[
tij(m)

] 1
1+θλ

[
Pi

] −θλ
1+θλ

[
Πj

] −θλ
1+θλ

]−θ

=

M∑
m=1

[
tij(m)

] −θ
1+θλ

[
Pi

] θ2λ
1+θλ

[
Πj

] θ2λ
1+θλ

=⇒ aij =

[
PiΠj

] θ2λ
1+θλ

[
M∑
m=1

[
tij(m)

] −θ
1+θλ

]
(E.33)

Now, we need to solve for Pi and Πj as functions of data and parameters. Note that:

Pi = Ai
(
LFi
)− 1

θ

[
L

W
θ

] 1
2θ

= Ai
(
LFi
)α (

LFi
)− 1

θ

[
L

W
θ

] 1
2θ

= Ai

[
LFi

] (θα−1)
θ

[
L

W
θ

] 1
2θ

Also, note that we have:

Πj = uj
(
LRj
)− 1

θ

[
L

W
θ

] 1
2θ

= uj
(
LRj
)β (

LRj
)− 1

θ

[
L

W
θ

] 1
2θ

= uj

[
LRj

] (θβ−1)
θ

[
L

W
θ

] 1
2θ

This implies that we have:

PiΠj =

Ai[LFi ] (θα−1)
θ

[
L

W
θ

] 1
2θ

uj[LRj ] (θβ−1)
θ

[
L

W
θ

] 1
2θ
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= Aiuj

[
LFi

] (θα−1)
θ
[
LRj

] (θβ−1)
θ

[
L

W
θ

] 1
θ

= Aiuj

[
L · lFi

] (θα−1)
θ
[
L · lRj

] (θβ−1)
θ

[
L

W
θ

] 1
θ

= Aiuj

[
L

] (θα+θβ−1)
θ

[
lFi

] (θα−1)
θ
[
lRj

] (θβ−1)
θ

W
−1

=⇒
[
PiΠj

] θ2λ
1+θλ

=

[
Ai

] θ2λ
1+θλ

[
uj

] θ2λ
1+θλ

[
L

] θλ(θα+θβ−1)
1+θλ

[
lFi

] (θα−1)θλ
1+θλ

[
lRj

] (θβ−1)θλ
1+θλ

[
W

]−θ2λ
1+θλ

Plugging this expression into (E.33) above, we have:

aij =

[
Ai

] θ2λ
1+θλ

[
uj

] θ2λ
1+θλ

[
L

] θλ(θα+θβ−1)
1+θλ

[
lFi

] (θα−1)θλ
1+θλ

[
lRj

] (θβ−1)θλ
1+θλ

[
W

]−θ2λ
1+θλ

[
M∑
m=1

[
tkl(m)

] −θ
1+θλ

]

Plugging this expression into (E.31) and simplifying, we obtain:

(ui)
−θ (

lRi
)1−βθ

= χ
(
Ai
)θ (

lFi
)αθ

+

N∑
j=1

aij (uj)
−θ (

lRj
)1−βθ

(ui)
−θ (

lRi
)1−βθ

= χ
(
Ai
)θ (

lFi
)αθ

+

N∑
j=1

{[
Ai

] θ2λ
1+θλ

[
uj

] θ2λ
1+θλ

[
L

] θλ(θα+θβ−1)
1+θλ

[
lFi

] (θα−1)θλ
1+θλ

[
lRj

] (θβ−1)θλ
1+θλ

[
W

]−θ2λ
1+θλ

×

[
M∑
m=1

[
tkl(m)

] −θ
1+θλ

]
(uj)

−θ (
lRj
)1−βθ}

(ui)
−θ (

lRi
)1−βθ

= χ
(
Ai
)θ (

lFi
)αθ

+ χ
θλ

1+θλ

N∑
j=1

{[
Ai

] θ2λ
1+θλ

[
uj

] −θ
1+θλ

[
L

] −λθ
1+θλ

[
lFi

] (θα−1)θλ
1+θλ

[
lRj

] 1−βθ
1+θλ

[
M∑
m=1

[
tkl(m)

] −θ
1+θλ

]}

This implies that we have:

[
lRi

]1−βθ[
lFi

] (1−θα)θλ
1+θλ

= χ
(
Ai
)θ

(ui)
θ (
lFi
) θ(α+λ)

1+θλ

+ χ
θλ

1+θλ

N∑
j=1

{[
Ai

] θ2λ
1+θλ

(ui)
θ

[
uj

] −θ
1+θλ

[
L

] −λθ
1+θλ

[
lRj

] 1−βθ
1+θλ

[
M∑
m=1

[
tij(m)

] −θ
1+θλ

]} (E.34)

Similarly, we can repeat the same procedure with (E.32) to show:

[
lRi

] θλ(1−βθ)
1+θλ

[
lFi

](1−θα)

= χ
(
Ai
)θ

(ui)
θ (
lRi
) θ(β+λ)

1+θλ

+ χ
θλ

1+θλ

N∑
j=1

{[
Ai

]θ[
Aj

] −θ
1+θλ

[
ui

] θ2λ
1+θλ

[
L

] −λθ
1+θλ

[
lFj

] 1−αθ
1+θλ

[
M∑
m=1

[
tji(m)

] −θ
1+θλ

]} (E.35)

Equation (E.34) is equation (E.23) above, and equation (E.35) is equation (E.24) above.
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E.11.7 Deriving the Counterfactuals: Exact Hat Algebra

Recall from equations (E.10) and (E.11), we have:

LRi =

N∑
j=1

Lij LFj =

N∑
i=1

Lij

and

Lij = τ−θij

[
LRi
Π−θi

][
LFj

P−θj

]
Substituting in the expression for Lij into the expression for LRi , we have:

LRi =

N∑
j=1

Lij

=

N∑
j=1

τ−θij

[
LRi
Π−θi

][
LFj

P−θj

]

=

N∑
j=1

bij

[
LRi
Π−θi

][
LFj

P−θj

]

=⇒ Π−θi =

N∑
j=1

bij

[
LFj

P−θj

]

=⇒


Π−θ1

Π−θ2

...
Π−θN

 =


b11 b21 . . . bN1

b12 b22 . . . bN2

...
...

. . .
...

b1N b2N . . . bNN



LF1 /P

−θ
1

LF2 /P
−θ
2

...
LFN/P

−θ
N


=⇒ [Π] = B

[
LF /P

]
=⇒ [Π] = (I−A)

−1 [
LF /P

]
=⇒ (I−A) [Π] =

[
LF /P

]
=⇒ [Π] =

[
LF /P

]
+ A [Π]

=⇒


Π−θ1

Π−θ2

...
Π−θN

 =


LF1 /P

−θ
1

LF2 /P
−θ
2

...
LFN/P

−θ
N

+


a11 a21 . . . aN1

a12 a22 . . . aN2

...
...

. . .
...

a1N a2N . . . aNN




Π−θ1

Π−θ2

...
Π−θN


So, this implies:

Π−θi =
LFi
P−θi

+

N∑
j=1

aijΠ
−θ
j (E.36)

Similarly, we can also show:

LFj =

N∑
i=1

Lij

=

N∑
i=1

τ−θij

[
LRi
Π−θi

][
LFj

P−θj

]
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=

N∑
i=1

bij

[
LRi
Π−θi

][
LFj

P−θj

]

=⇒ P−θj =

N∑
i=1

bij

[
LRi
Π−θi

]

=⇒


P−θ1

P−θ2

...
P−θN

 =


b11 b21 . . . bN1

b12 b22 . . . bN2

...
...

. . .
...

b1N b2N . . . bNN



LR1 /Π

−θ
1

LR2 /Π
−θ
2

...
LRN/Π

−θ
N


=⇒ [P] = B

[
LR/Π

]
=⇒ [P] = (I−A)

−1 [
LR/Π

]
=⇒ (I−A) [P] =

[
LR/Π

]
=⇒ [P] =

[
LR/Π

]
+ A [P]

=⇒


P−θ1

P−θ2

...
P−θN

 =


LR1 /Π

−θ
1

LR2 /Π
−θ
2

...
LRN/Π

−θ
N

+


a11 a21 . . . aN1

a12 a22 . . . aN2

...
...

. . .
...

a1N a2N . . . aNN



P−θ1

P−θ2

...
P−θN


So, this implies:

P−θi =
LRi
Π−θi

+

N∑
j=1

ajiP
−θ
j (E.37)

So, we can write:

Π̂i

−θ
=

Π−θ
′

i

Π−θi

=

LF
′

i

P−θ
′

i

+
∑N
j=1 a

′
ijΠ
−θ′
j

LFi
P−θi

+
∑N
j=1 aijΠ

−θ
j

=

LF
′

i

P−θ
′

i

LFi
P−θi

+
∑N
j=1 aijΠ

−θ
j

+

N∑
j=1

 a′ijΠ
−θ′
j

LFi
P−θi

+
∑N
j=1 aijΠ

−θ
j


=

[
LF
′

i /P
−θ′
i

LFi /P
−θ
i +

∑N
j=1 aijΠ

−θ
j

][
LFi /P

−θ
i

LFi /P
−θ
i

]
+

N∑
j=1

(
a′ijΠ

−θ′
j

LFi /P
−θ
i +

∑N
j=1 aijΠ

−θ
j

)(
aijΠ

−θ
j

aijΠ
−θ
j

)

=

[
LFi /P

−θ
i

LFi /P
−θ
i +

∑N
j=1 aijΠ

−θ
j

][
LF
′

i /P
−θ′
i

LFi /P
−θ
i

]
+

N∑
j=1

(
aijΠ

−θ
j

LFi /P
−θ
i +

∑N
j=1 aijΠ

−θ
j

)(
a′ijΠ

−θ′
j

aijΠ
−θ
j

)

=

[
LFi /P

−θ
i

LFi /P
−θ
i +

∑N
j=1 aijΠ

−θ
j

][
L̂i
F

P̂i
−θ

]
+

N∑
j=1

(
aijΠ

−θ
j

LFi /P
−θ
i +

∑N
j=1 aijΠ

−θ
j

)(
âijΠ̂j

−θ)

Recalling that Ξij = aijΠ
−θ
j P−θi , we have:

Π̂i

−θ
=

[
LFi /P

−θ
i

LFi /P
−θ
i +

∑N
j=1 aijΠ

−θ
j

][
L̂i
F

P̂i
−θ

]
+

N∑
j=1

(
aijΠ

−θ
j

LFi /P
−θ
i +

∑N
j=1 aijΠ

−θ
j

)(
âijΠ̂j

−θ)
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=

[
LFi

LFi +
∑N
j=1 aijP

−θ
i Π−θj

][
L̂i
F

P̂i
−θ

]
+

N∑
j=1

(
aijP

−θ
i Π−θj

LFi +
∑N
j=1 aijP

−θ
i Π−θj

)(
âijΠ̂j

−θ)

Π̂i

−θ
=

[
LFi

LFi +
∑N
j=1 Ξij

][
L̂i
F

P̂i
−θ

]
+

N∑
j=1

(
Ξij

LFi +
∑N
j=1 Ξij

)(
âijΠ̂j

−θ)
(E.38)

Following a similar approach for P−θi , we have:

P̂i
−θ

=
P−θ

′

i

P−θi

=

LRi
Π−θ

′
i

+
∑N
j=1 a

′
jiP
−θ′
j

LRi
Π−θi

+
∑N
j=1 ajiP

−θ
j

=

LR
′

i

Π−θ
′

i

LRi
Π−θi

+
∑N
j=1 ajiP

−θ
j

+

N∑
j=1

 a′jiP
−θ′
j

LRi
Π−θi

+
∑N
j=1 ajiP

−θ
j


=

[
LR
′

i /Π
−θ′
i

LRi /Π
−θ
i +

∑N
j=1 ajiP

−θ
j

][
LRi /Π

−θ
i

LRi /Π
−θ
i

]
+

N∑
j=1

(
a′ijP

−θ′
j

LRi /Π
−θ
i +

∑N
j=1 ajiP

−θ
j

)(
ajiP

−θ
j

ajiP
−θ
j

)

=

[
LRi /Π

−θ
i

LRi /Π
−θ
i +

∑N
j=1 ajiP

−θ
j

][
LR
′

i /Π
−θ′
i

LRi /Π
−θ
i

]
+

N∑
j=1

(
ajiP

−θ
j

LRi /Π
−θ
i +

∑N
j=1 ajiP

−θ
j

)(
a′jiP

−θ′
j

ajiP
−θ
j

)

=

[
LRi /Π

−θ
i

LRi /Π
−θ
i +

∑N
j=1 ajiP

−θ
j

][
L̂i
R

Π̂i

−θ

]
+

N∑
j=1

(
ajiP

−θ
j

LRi /Π
−θ
i +

∑N
j=1 ajiP

−θ
j

)(
âjiP̂j

−θ)

=

[
LRi

LRi +
∑N
j=1 ajiΠ

−θ
i P−θj

][
L̂i
R

Π̂i

−θ

]
+

N∑
j=1

(
ajiΠ

−θ
i P−θj

LRi +
∑N
j=1 ajiΠ

−θ
i P−θj

)(
âjiP̂j

−θ)

P̂i
−θ

=

[
LRi

LRi +
∑N
j=1 Ξji

][
L̂i
R

Π̂i

−θ

]
+

N∑
j=1

(
Ξji

LRi +
∑N
j=1 Ξji

)(
âjiP̂j

−θ)
(E.39)

Now, recall that we have:

aij =

M∑
m=1

tij(m)−θ

=

M∑
m=1

[[
tij(m)

] 1
1+θλ

[
Pi
] −θλ

1+θλ
[
Πj

] −θλ
1+θλ

]−θ

=
[
Pi
] θ2λ

1+θλ
[
Πj

] θ2λ
1+θλ

[
M∑
m=1

[
tij(m)

] −θ
1+θλ

]

This implies:

âij ≡
a′ij
aij

=

[
P ′i
] θ2λ

1+θλ
[
Π′j
] θ2λ

1+θλ

[∑M
m=1

[
t
′
ij(m)

] −θ
1+θλ

]
[
Pi
] θ2λ

1+θλ
[
Πh

] θ2λ
1+θλ

[∑M
m=1

[
tij(m)

] −θ
1+θλ

]
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=
[
P̂i
] θ2λ

1+θλ
[
Π̂j

] θ2λ
1+θλ

∑M
m=1

[
t
′
ij(m)

] −θ
1+θλ∑M

m=1

[
tij(m)

] −θ
1+θλ


=⇒ âij =

[
P̂i
] θ2λ

1+θλ
[
Π̂j

] θ2λ
1+θλ t̂ij (E.40)

where t̂ij is defined as follows:

t̂ij ≡

∑M
m=1

[
t
′
ij(m)

] −θ
1+θλ∑M

m=1

[
tij(m)

] −θ
1+θλ


Substituting equation (E.40) into equation (E.38), we have:

Π̂i

−θ
=

[
LFi

LFi +
∑N
j=1 Ξij

][
L̂i
F

P̂i
−θ

]
+

N∑
j=1

(
Ξij

LFi +
∑N
j=1 Ξij

)(
âijΠ̂j

−θ)

=⇒ P̂i
−θ

Π̂i

−θ
=

[
LFi

LFi +
∑N
j=1 Ξij

]
L̂i
F

+

N∑
j=1

(
Ξij

LFi +
∑N
j=1 Ξij

)(
âijP̂i

−θ
Π̂j

−θ)

=⇒ P̂i
−θ

Π̂i

−θ
=

[
LFi

LFi +
∑N
j=1 Ξij

]
L̂i
F

+

N∑
j=1

(
Ξij

LFi +
∑N
j=1 Ξij

)(
t̂ijP̂i

−θ
1+θλ Π̂j

−θ
1+θλ

)
(E.41)

Similarly, substituting equation (E.40) into equation (E.39), we have:

P̂i
−θ

=

[
LRi

LRi +
∑N
j=1 Ξji

][
L̂i
R

Π̂i

−θ

]
+

N∑
j=1

(
Ξji

LRi +
∑N
j=1 Ξji

)(
âjiP̂j

−θ)

=⇒ P̂i
−θ

Π̂i

−θ
=

[
LRi

LRi +
∑N
j=1 Ξji

]
L̂i
R

+

N∑
j=1

(
Ξji

LRi +
∑N
j=1 Ξji

)(
âjiP̂j

−θ
Π̂i

−θ)

=⇒ P̂i
−θ

Π̂i

−θ
=

[
LRi

LRi +
∑N
j=1 Ξji

]
L̂i
R

+

N∑
j=1

(
Ξji

LRi +
∑N
j=1 Ξji

)(
t̂jiP̂j

−θ
1+θλ

Π̂i

−θ
1+θλ

)
(E.42)

Recall that from equation (E.12), we have:

Πi = ui
[
LRi
]−1
θ

[
L

W
θ

] 1
2θ

= ui
[
LRi
]β [

LRi
]−1
θ
[
L
] 1

2θ
[
W
]−1

2

= ui
[
lRi
] θβ−1

θ
[
L
] 2θβ−1

2θ
[
W
]−1

2

=⇒ Π̂i =
ui
[
lR
′

i

] θβ−1
θ
[
L
] 2θβ−1

2θ
[
W ′
]−1

2

ui
[
lRi
] θβ−1

θ
[
L
] 2θβ−1

2θ
[
W
]−1

2

Π̂i =
[
l̂i
R
] θβ−1

θ
[
Ŵ
]−1

2

(E.43)

Similarly, recall that from equation (E.13), we have:

Pi = Ai
[
LFi
]−1
θ

[
L

W
θ

] 1
2θ
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= Ai
[
LFi
]α [

LFi
]−1
θ
[
L
] 1

2θ
[
W
]−1

2

= Ai
[
lFi
] θα−1

θ
[
L
] 2θα−1

2θ
[
W
]−1

2

=⇒ P̂i =
Ai
[
lF
′

i

] θα−1
θ
[
L
] 2θα−1

2θ
[
W ′
]−1

2

Ai
[
lFi
] θα−1

θ
[
L
] 2θα−1

2θ
[
W
]−1

2

P̂i =
[
l̂i
F
] θα−1

θ
[
Ŵ
]−1

2

(E.44)

The two boxed expressions above, equations (E.43) and (E.44), imply:

Π̂iP̂i =
[
l̂i
F
] θα−1

θ
[
l̂i
R
] θβ−1

θ
[
Ŵ
]−1

=⇒ Π̂i

−θ
P̂i
−θ

=
[
l̂i
F
]1−θα [

l̂i
R
]1−θβ [

Ŵ
]θ

=⇒ Π̂i

−θ
1+θλ

P̂j
−θ

1+θλ
=
[
l̂i
R
] 1−θβ

1+θλ
[
l̂j
F
] 1−θα

1+θλ
[
Ŵ
] θ

1+θλ

(E.45)

Further, note that:

χ =

(
L

(α+β)

W

)θ
= L

θ(α+β)
W
−θ

=⇒ χ̂ =
W
−θ′

W
−θ

=⇒ χ̂ = Ŵ
−θ

Plugging the expressions from (E.45) into equation (E.41) and rearranging, we obtain:

P̂i
−θ

Π̂i

−θ
=

[
LFi

LFi +
∑N
j=1 Ξij

]
L̂i
F

+

N∑
j=1

(
Ξij

LFi +
∑N
j=1 Ξij

)(
t̂ijP̂i

−θ
1+θλ Π̂j

−θ
1+θλ

)

=⇒
[
l̂i
F
]1−θα [

l̂i
R
]1−θβ [

Ŵ
]θ

=

[
LFi

LFi +
∑N
j=1 Ξij

]
l̂i
F

+

N∑
j=1

(
Ξij

LFi +
∑N
j=1 Ξij

)(
t̂ij

[
l̂j
R
] 1−θβ

1+θλ
[
l̂i
F
] 1−θα

1+θλ
[
Ŵ
] θ

1+θλ

)

=⇒
[
l̂i
F
]1−θα [

l̂i
R
]1−θβ

=
[
Ŵ
]−θ [ LFi

LFi +
∑N
j=1 Ξij

]
l̂i
F

+
[
Ŵ
]−θ2λ

1+θλ
N∑
j=1

(
Ξij

LFi +
∑N
j=1 Ξij

)(
t̂ij

[
l̂j
R
] 1−θβ

1+θλ
[
l̂i
F
] 1−θα

1+θλ

)

=⇒
[
l̂i
F
]1−θα [

l̂i
R
]1−θβ

= χ̂

[
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(E.46)
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Similarly, plugging the expressions from (E.45) into equation (E.42) and rearranging, we obtain:
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∑N
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)
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)(
t̂ji

[
l̂i
R
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Ŵ
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[
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R
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)

=⇒
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R
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LRi +
∑N
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]
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θλ

1+θλ

N∑
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(
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∑N
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)(
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[
l̂i
R
] 1−θβ

1+θλ
[
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)

=⇒
[
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F
]1−θα [

l̂i
R
] θλ(1−θβ)

1+θλ

= χ̂

[
LRi

LRi +
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j=1 Ξji
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l̂i
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[
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)
(E.47)

Equation (E.46) is identical to (E.26) in the text, while (E.47) is identical to (E.27) in the text. Note that (E.26) and
(E.27) are nearly identical to equations (38) and (39) in Allen and Arkolakis (2020), except for the terms t̂ij . In
this extended model, the exact hat equations need to account for improvements to potentially multiple transport
modes, while in equations (38) and (39) of Allen and Arkolakis (2020), only one transport mode is considered.
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